首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein tyrosine phosphatases (PTPs) play key roles in switching off tyrosine phosphorylation cascades, such as initiated by cytokine receptors. We have used substrate-trapping mutants of a large set of PTPs to identify members of the PTP family that have substrate specificity for the phosphorylated human GH receptor (GHR) intracellular domain. Among 31 PTPs tested, T cell (TC)-PTP, PTP-beta, PTP1B, stomach cancer-associated PTP 1 (SAP-1), Pyst-2, Meg-2, and PTP-H1 showed specificity for phosphorylated GHR that had been produced by coexpression with a kinase in bacteria. We then used GH-induced, phosphorylated GH receptor, purified from overexpressing mammalian cells, in a Far Western-based approach to test whether these seven PTPs were also capable of recognizing ligand-induced, physiologically phosphorylated GHR. In this assay, only TC-PTP, PTP1B, PTP-H1, and SAP-1 interacted with the mature form of the phosphorylated GHR. In parallel, we show that these PTPs recognize very different subsets of the seven GHR tyrosines that are potentially phosphorylated. Finally, mRNA tissue distribution of these PTPs by RT-PCR analysis and coexpression of the wild-type PTPs to test their ability to dephosphorylate ligand-activated GHR suggest PTP-H1 and PTP1B as potential candidates involved in GHR signaling.  相似文献   

2.
Seven protein tyrosine phosphatase (PTPase) genes have been identified in the fruit-fly Drosophila melanogaster. Four of these genes encode receptor-linked PTPases (R-PTPs) that are expressed on central nervous system axons in the embryo. Each axonal R-PTP has an extracellular domain that is homologous to vertebrate adhesion molecules and to identified mammalian R-PTPs. Two non-receptor PTPase genes have been isolated to date. One of these, corkscrew (csw), encodes an SH2 domain-containing PTPase that appears to be a homolog of mammalian PTP1D. Genetic evidence indicates that the csw PTPase is involved in the transduction of signals from receptor tyrosine kinases to their down-stream targets, which include Ras proteins.  相似文献   

3.
The aim of this review is to provide a synthesis of the published experimental data on protein tyrosine phosphatases from parasitic protozoa, in silico analysis based on the availability of completed genomes and to place available data for individual phosphatases from different unicellular parasites into the comparative and evolutionary context. We analysed the complement of protein tyrosine phosphatases (PTP) in several species of unicellular parasites that belong to Apicomplexa (Plasmodium; Cryptosporidium, Babesia, Theileria, and Toxoplasma), kinetoplastids (Leishmania and Trypanosoma spp.), as well as Entamoeba histolytica, Giardia lamblia, Trichomonas vaginalis and a microsporidium Encephalitozoon cuniculi. The analysis shows distinct distribution of the known families of tyrosine phosphatases in different species. Protozoan tyrosine phosphatases show considerable levels of divergence compared with their mammalian homologues, both in terms of sequence similarity between the catalytic domains and the structure of their flanking domains. This potentially makes them suitable targets for development of specific inhibitors with minimal effects on physiology of mammalian hosts.  相似文献   

4.
5.
There is general agreement that many cancers are associated with aberrant phosphotyrosine signaling, which can be caused by the inappropriate activities of tyrosine kinases or tyrosine phosphatases. Furthermore, incorrect activation of signaling pathways has been often linked to changes in adhesion events mediated by cell surface receptors. Among these receptors, receptor protein tyrosine phosphatases (RPTPs) both antagonize tyrosine kinases as well as engage extracellular ligands. A recent wealth of data on this intriguing family indicates that its members can fulfill either tumor suppressing or oncogenic roles. The interpretation of these results at a molecular level has been greatly facilitated by the recent availability of structural information on the extra- and intracellular regions of RPTPs. These structures provide a molecular framework to understand how alterations in extracellular interactions can inactivate RPTPs in cancers or why the overexpression of certain RPTPs may also participate in tumor progression.  相似文献   

6.
Unrestricted protein tyrosine phosphatase (PTPase) activity may play a role in pathogenesis. For instance, the virulence determinant gene, yopH, of Yersinia pseudotuberculosis encodes a PTPase. The phosphatase activity of the YopH protein is essential for the pathogenesis of Y. pseudotuberculosis. Yersinia pestis, the bacterium which causes the bubonic plague, also contains a gene closely related to yopH. The action of YopH on host proteins appears to break down signal transduction mechanisms in many cell types including those of the immune system. This may contribute to the ability of the bacterium to escape effective surveillance by the immune system. The vaccinia virus VH1 gene, like yopH in the Yersinia bacteria, encodes a protein phosphatase. The VH1 PTPase defines a new class of phosphatases capable of dephosphorylating both phosphoserine/threonine and tyrosine containing substrates. Proteins sharing sequence identity to this dual-specificity phosphatase have been identified from other viruses, yeast and man. Although a complete understanding of the function of these dual-specificity phosphatases is not presently available, they clearly play important roles in cell cycle regulation, growth control and mitogenic signaling mechanisms. The unique catalytic properties of the dual specificity phosphatases suggest that these catalysts constitute a distinct subfamily of phosphatases.  相似文献   

7.
Molecular characterization of protein tyrosine phosphatases.   总被引:16,自引:0,他引:16  
  相似文献   

8.
Protein tyrosine phosphatases (PTPs) play a central role in cellular signaling processes, resulting in an increased interest in modulating the activities of PTPs. We therefore decided to undertake a detailed enzyme kinetic evaluation of various transmembrane and cytosolic PTPs (PTPalpha, PTPbeta, PTPepsilon, CD45, LAR, PTP1B and SHP-1), using pNPP as substrate. Most noticeable is the increase in the turnover number for PTPbeta with increasing pH and the weak pH-dependence of the turnover number of CD45. The kinetic data for PTPalpha-D1 and PTPalpha-D1D2 suggest that D2 affects the catalysis of pNPP. PTPepsilon and the closely homologous PTPalpha behave differently. The K(m) data were lower for PTPepsilon than those for PTPalpha, while the inverse was observed for the catalytic efficiencies.  相似文献   

9.
10.
Chin CN  Sachs JN  Engelman DM 《FEBS letters》2005,579(17):3855-3858
Receptor-like protein tyrosine phosphatases (RPTPs) are type I integral membrane proteins. Together with protein tyrosine kinases, RPTPs regulate the phosphotyrosine levels in the cell. Studies of two RPTPs, CD45 and PTPalpha, have provided strong evidence that dimerization leads to inactivation of the receptors, and that the dimerization of PTPalpha involves interactions in the transmembrane domain (TMD). Using the TOXCAT assay, a genetic approach for analyzing TM interactions in Escherichia coli membranes, we show that the TMD of RPTPs interact in the membrane, albeit to different extents. Using fusion proteins of TMDs, we also observe an equilibrium between monomer and dimer in sodium dodecyl sulfate (SDS) micelles. Through a mutational study of the DEP1 TMD, we demonstrate that these interactions are specific. Taken together, our results define a subset of the RPTP family in which TM homodimerization may act as a mediator of protein function.  相似文献   

11.
Signaling through receptor tyrosine kinases (RTKs) is a major mechanism for intercellular communication during development and in the adult organism, as well as in disease-associated processes. The phosphorylation status and signaling activity of RTKs is determined not only by the kinase activity of the RTK but also by the activities of protein tyrosine phosphatases (PTPs). This review discusses recently identified PTPs that negatively regulate various RTKs and the role of PTP inhibition in ligand-induced RTK activation. The contributions of PTPs to ligand-independent RTK activation and to RTK inactivation by other classes of receptors are also surveyed. Continued investigation into the involvement of PTPs in RTK regulation is likely to unravel previously unrecognized layers of RTK control and to suggest novel strategies for interference with disease-associated RTK signaling.  相似文献   

12.
Protein tyrosine phosphatases (PTPs) constitute a large family of enzymes that play key roles in cell signaling. Deregulation of PTP activity results in aberrant tyrosine phosphorylation, which has been linked to the etiology of several human diseases, including cancer. Since phosphate removal by the PTPs can both enhance and antagonize cellular signaling, it is essential to elucidate the physiological context in which PTPs operate. Two powerful proteomic approaches have been developed to rapidly establish the exact functional roles for every PTP, both in normal cellular physiology and in pathogenic conditions. In the first, an affinity-based substrate-trapping approach has been employed for PTP substrate identification. Identification and characterization of specific PTP-substrate interactions will associate functions with PTP as well as implicate PTP to specific signaling pathways. In the second, a number of activity-based PTP probes have been developed that can provide a direct readout of the functional state of the PTPs in complex proteomes. The ability to profile the entire PTP family on the basis of changes in their activity is expected to yield new functional insights into pathways regulated by the PTPs and contribute to the discovery of PTPs as novel therapeutic targets. Effective application of these proteomic techniques will accelerate the functional characterization of PTPs, thereby facilitating our understanding of PTPs in cell signaling and in diseases.  相似文献   

13.
14.
Oxidation of the catalytic cysteine of protein-tyrosine phosphatases (PTP), which leads to their reversible inactivation, has emerged as an important regulatory mechanism linking cellular tyrosine phosphorylation and signalling by reactive-oxygen or -nitrogen species (ROS, RNS). This review focuses on recent findings about the involved pathways, enzymes and biochemical mechanisms. Both the general cellular redox state and extracellular ligand-stimulated ROS production can cause PTP oxidation. Members of the PTP family differ in their intrinsic susceptibility to oxidation, and different types of oxidative modification of the PTP catalytic cysteine can occur. The role of PTP oxidation for physiological signalling processes as well as in different pathologies is described on the basis of well-investigated examples. Criteria to establish the causal involvement of PTP oxidation in a given process are proposed. A better understanding of mechanisms leading to selective PTP oxidation in a cellular context, and finding ways to pharmacologically modulate these pathways are important topics for future research.  相似文献   

15.
Leptin plays a central role in weight control by suppressing food intake and increasing energy expenditure. The concept of leptin resistance emerged to explain the seemingly paradoxical elevated leptin levels in obesity. Recent discoveries reveal that protein tyrosine phosphatases are key players in leptin resistance by globally suppressing leptin signaling.  相似文献   

16.
A series of aryl alpha-ketocarboxylic acids was synthesized and investigated as inhibitors for the protein tyrosine phosphatase from Yersinia enterocolitica. IC(50) values for these compounds range from 79 to 2700 microM. Larger aromatic groups, and aromatic groups with high electron density, lead to more potent inhibitors. In general, the related aryl alpha-hydroxycarboxylic acids show lower activity.  相似文献   

17.
Protein tyrosine phosphatase (PTP) in-gel assays were used to explore association of PTPs with the platelet-derived growth factor beta-receptor (PDGFbetaR). Five PTP activity bands of approximately 120, approximately 70, approximately 60, approximately 53, and approximately 45 kDa could be detected in PDGFbetaR immunoprecipitates and were identified by immunodepletion experiments as PTP-PEST, SHP-2, an active fragment of SHP-2, PTP-1B, and T-cell PTP, respectively. The PTP pattern that was obtained was similar in PDGFbetaR immunoprecipitates from HEK 293 cells overexpressing the human PDGFbetaR and from murine fibroblasts. Association of PTP-1B with the PDGFbetaR was stabilized by pretreatment of the cells with hydrogen peroxide. The epidermal growth factor receptor (EGFR) immunoprecipitated from fibroblasts, and c-Kit isolated from CHRF myeloid cells, were associated with partially overlapping but quantitatively different patterns of PTPs. PTP-PEST was the predominant PTP in EGFR immunoprecipitates, and SHP-1 appeared in c-Kit immunoprecipitates. We propose that the differential association of PTPs with different RTKs is related to their respective contributions to regulation of RTK signaling.  相似文献   

18.
UV irradiation causes inflammatory and proliferative cellular responses. We have proposed previously that these effects are, to a large extent, caused by the ligand-independent activation of several receptor tyrosine kinases due to the inactivation of their negative control elements, the protein tyrosine phosphatases (PTPs). We examined the mechanism of this inactivation and found that, in addition to reversible oxidation of PTPs, UV triggers a novel mechanism: induced degradation of PTPs by calpain, which requires both calpain activation and substrate PTP oxidative modification. This as yet unrecognized effect of UV is irreversible, occurs predominantly with UVA and UVB, the range of wavelengths in sunlight that reach the skin surface, and at physiologically relevant doses.  相似文献   

19.
Reversible protein phosphorylation plays a central role in cellular signal transduction and is a focus of biomedical studies. However, it is a challenging task to study the effects of protein phosphorylation in the presence of protein phosphatase activities, especially for protein tyrosine phosphatases SHP1, SHP2 and LMW-PTP, which are themselves regulated by protein tyrosine phosphorylation. Expressed protein ligation, by combining chemical peptide synthesis with recombinant protein expression, allows for site-specific unnatural modifications of semisynthetic proteins. In this review, we describe how semisynthetic proteins were prepared to incorporate nonhydrolyzable phosphotyrosine analogs, and utilized in combination with site-directed mutagenesis and other means to elucidate regulatory mechanisms of protein tyrosine phosphatases.  相似文献   

20.
In addition to protein phosphorylation, redox-dependent post-translational modification of proteins is emerging as a key signaling system that has been conserved throughout evolution and that influences many aspects of cellular homeostasis. Both systems exemplify dynamic regulation of protein function by reversible modification, which, in turn, regulates many cellular processes such as cell proliferation, differentiation and apoptosis. In this article we focus on the interplay between phosphorylation- and redox-dependent signaling at the level of phosphotyrosine phosphatase-mediated regulation of receptor tyrosine kinases (RTKs). We propose that signal transduction by oxygen species through reversible phosphotyrosine phosphatase inhibition, represents a widespread and conserved component of the biochemical machinery that is triggered by RTKs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号