首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Increased amino acid requirement of malignant cells is exploited in metabolic antitumor therapy, e.g., enzymotherapies based on arginine or methionine deprivation. However, studies on animal models and clinical trials revealed that solid tumors are much less susceptible to single amino acid starvation than could be expected from the in vitro data. We conducted a comparative analysis of the response of several tumor cell lines to single amino acid starvation in 2-D monolayer versus 3-D spheroid culture. We revealed for the first time that in comparison with monolayer culture tumor cells, spheroids are much less susceptible to the deprivation of individual amino acids (i.e., arginine, leucine, lysine or methionine). Accordingly, even after prolonged (up to 10 days) starvation, spheroid cells could readily resume proliferation when appropriate amino acid was resupplemented. In the case of arginine deprivation, similar apoptosis induction was detected both in 2-D and 3-D culture, suggesting that this process does not determine the level of tumor cell sensitivity to this kind of treatment. It was also observed that spheroids much better mimic the in vivo ability of tumor cells to utilize citrulline as arginine precursor for growth in amino acid deficient environment. We conclude that 3-D spheroid culture better reflects in vivo tumor cell response to single amino acid starvation than 2-D monolayer culture and should be used as an integral model in the studies of this type of antitumor metabolic targeting.  相似文献   

2.
Ovarian cancers metastasize by shedding into the peritoneal fluid and dispersing to distal sites within the peritoneum. Monolayer cultures do not accurately model the behaviors of cancer cells within a nonadherent environment, as cancer cells inherently aggregate into multicellular structures which contribute to the metastatic process by attaching to and invading the peritoneal lining to form secondary tumors. To model this important stage of ovarian cancer metastasis, multicellular aggregates, or spheroids, can be generated from established ovarian cancer cell lines maintained under nonadherent conditions. To mimic the peritoneal microenvironment encountered by tumor cells in vivo, a spheroid-mesothelial co-culture model was established in which preformed spheroids are plated on top of a human mesothelial cell monolayer, formed over an extracellular matrix barrier. Methods were then developed using a real-time cell analyzer to conduct quantitative real time measurements of the invasive capacity of different ovarian cancer cell lines grown as spheroids. This approach allows for the continuous measurement of invasion over long periods of time, which has several advantages over traditional endpoint assays and more laborious real time microscopy image analyses. In short, this method enables a rapid, determination of factors which regulate the interactions between ovarian cancer spheroid cells invading through mesothelial and matrix barriers over time.  相似文献   

3.
Two third-generation aromatase inhibitors, letrozole and anastrozole, and the antiestrogen tamoxifen, were compared for growth-inhibiting activity in two estrogen receptor (ER)-positive aromatase-overexpressing human breast cancer cell lines, MCF-7aro and T-47Daro. Inhibition of hormone (1 nM testosterone)-stimulated proliferation was evaluated in both monolayer cultures and in three-dimensional spheroid cultures. Letrozole and anastrozole were also compared for effectiveness of aromatase inhibition, and relative affinity for aromatase, under both monolayer and spheroid growth conditions. Letrozole was an effective inhibitor of MCF-7aro monolayer cell proliferation, with an estimated 50% inhibitory concentration (IC50) of 50-100 nM, whereas an IC50 was not reached with anastrozole at any concentration tested (100-500 nM). An IC50 of tamoxifen was 1000 nM. Proliferation of T-47Daro monolayer cells was more sensitive to inhibition by all three agents; as with MCF-7aro cells, letrozole was the most effective inhibitor. MCF-7aro spheroids were slightly less sensitive than monolayer cells proliferation-inhibiting effects of letrozole (IC50 about 200 nM), and there was no significant inhibition with 100-200 nM anastrozole or 200-1000 nM tamoxifen. Letrozole and anastrozole significantly inhibited T-47Daro spheroid cell proliferation, at 15-25 and 50 nM, respectively, consistent with the greater sensitivity of T-47Daro monolayer cells to inhibition of proliferation by these agents. Tamoxifen failed to significantly inhibit T-47Daro spheroid cell proliferation over a 100-500 nM concentration range. Determination of aromatase inhibition in monolayers of both cell lines by a direct-access microsomal assay and an intact-cell assay revealed that letrozole was more active than anastrozole in monolayers of both cell lines and in both assays. In MCF-7aro spheroids following cell lysis, only letrozole significantly inhibited aromatase activity, supporting the conclusion that letrozole binds stronger to aromatase than anastrozole does. Our results demonstrate that MCF-7aro and T-47Daro spheroids could be a suitable model for evaluation of growth-inhibitory effects of agents used in hormonal therapy of breast cancer.  相似文献   

4.
Heat shock protein 70 (Hsp70), a protein induced in cells exposed to sublethal heat shock, is present in all living cells and has been highly conserved during evolution. The aim of the current study was to determine the role of heat shock proteins in the resistance of prostate carcinoma cell line spheroids to hyperthermia. In vitro, the expression of Hsp70 by the DU 145 cell line, when cultured as monolayer or multicellular spheroids, was studied using Western blotting and enzyme-linked immunosorbent assay methods. The level of Hsp70 in spheroid cultures for up to 26 days at 37 degrees C remained similar to monolayer cultures. However, in samples treated with hyperthermia at 43 degrees C for 120 min, the spheroid cultures expressed a higher level of Hsp70 as compared to monolayer culture. Under similar conditions of heat treatment, the spheroids showed more heat resistance than monolayer cultures as judged by the number of colonies that they formed in suspension cultures. The results suggest that cells cultured in multicellular spheroids showed more heat resistance as compared to monolayer cultures by producing higher levels of Hsp70.  相似文献   

5.
Lin RZ  Lin RZ  Chang HY 《Biotechnology journal》2008,3(9-10):1172-1184
Many types of mammalian cells can aggregate and differentiate into 3-D multicellular spheroids when cultured in suspension or a nonadhesive environment. Compared to conventional monolayer cultures, multicellular spheroids resemble real tissues better in terms of structural and functional properties. Multicellular spheroids formed by transformed cells are widely used as avascular tumor models for metastasis and invasion research and for therapeutic screening. Many primary or progenitor cells on the other hand, show significantly enhanced viability and functional performance when grown as spheroids. Multicellular spheroids in this aspect are ideal building units for tissue reconstruction. Here we review the current understanding of multicellular spheroid formation mechanisms, their biomedical applications, and recent advances in spheroid culture, manipulation, and analysis techniques.  相似文献   

6.
The cytotoxic activity of short-chain (C(2)) ceramide was evaluated in human intestinal carcinoma cells grown as multicellular tumor spheroids versus the same cells cultured as monolayers under closely comparable conditions. A decrease in cell number was seen in monolayer cultures of HT-29, Caco-2, and HRT-18 cells, with an EC(50) (concentration for half-maximal toxicity) of between 13 and 23 microM. However, when the same cells were grown in the multicellular spheroid format, C(2) was markedly less potent in reducing cell number, with an EC(50) of between 44 and 63 microM, representing a 1.9- to 4.9-fold decrease in its potency. The chemotherapeutic agents 5-fluorouracil and cisplatin were equally potent against spheroids and monolayer cultures, indicating that although drug access is a problem in conventionally grown tumor spheroids it is not a problem for spheroids grown under the conditions used in this study. Our results suggest that although ceramide is capable of inducing cell death in intestinal carcinoma cells grown in spheroid culture, its cellular toxicity is constrained by influences that are independent of drug access and may be the consequence of the altered cellular relationships. Carcinoma cell populations show an intrinsically decreased responsiveness to the effects of ceramide when they are grown in a three-dimensional culture format.  相似文献   

7.
The aim of this study was to investigate the effect of hyperthermia, 6 MeV electron radiation and combination of these treatments on cancer cell line DU145 in both monolayer culture and spheroids enriched for prostate cancer stem cells (CSCs). Flowcytometric analysis of the expression of molecular markers CD133+/CD44+ was carried out to determine the prostate CSCs in cell line DU145 grown as spheroids in serum-free medium. Following monolayer and spheroid culture, DU145 cells were treated with different doses of hyperthermia, electron beam and combination of them. The survival and self-renewing of the cells were evaluated by colony formation assay (CFA) and spheroid formation assay (SFA). Flowcytometry results indicated that the percentage of CD133+/CD44+ cells in spheroid culture was 13.9-fold higher than in the monolayer culture. The SFA showed significant difference between monolayer and spheroid culture for radiation treatment (6 Gy) and hyperthermia (60 and 90 min). The CFA showed significantly enhanced radiosensitivity in DU145 cells grown as monolayer as compared to spheroids, but no effect of hyperthermia. In contrast, for the combination of radiation and hyperthermia the results of CFA and SFA showed a reduced survival fraction in both cultures, with larger effects in monolayer than in spheroid culture. Thus, hyperthermia may be a promising approach in prostate cancer treatment that enhances the cytotoxic effect of electron radiation. Furthermore, determination and characterization of radioresistance and thermoresistance of CSCs in the prostate tumor is the key to develop more efficient therapeutic strategies.  相似文献   

8.
Cell-based assays are more complex than cell-free test systems but still reflect a highly artificial cellular environment. Incorporation of organotypic 3-dimensional (3-D) culture systems into mainstream drug development processes is increasingly discussed but severely limited by complex methodological requirements. The objective of this study was to explore a panel of standard assays to provide an easy-handling, standardized protocol for rapid routine analysis of cell survival in multicellular tumor spheroid-based antitumor drug testing. Spheroids of 2 colon carcinoma cell lines were characterized for evaluation. One of the assay systems tested could reliably be used to determine cell viability in spheroids. The authors verified that the acid phosphatase assay (APH) is applicable for single spheroids in 96-well plates, does not require spheroid dissociation, and is linear and highly sensitive for HT29 and HCT-116 spheroids up to diameters of 650 microm and 900 microm, consisting of 40,000 and 80,000 cells, respectively. Treatment of HT29 and HCT-116 cells with 5-fluorouracil, Irinotecan, and C-1311 revealed critically reduced drug efficacies in 3-D versus monolayer culture, which is discussed in light of literature data. The experimental protocol presented herein is a small but substantial contribution to the establishment of sophisticated 3-D in vitro systems in the antitumor drug screening scenario.  相似文献   

9.
While 3-D tissue models have received increasing attention over the past several decades in the development of traditional anti-cancer therapies, their potential application for the evaluation of advanced drug delivery systems such as nanomedicines has been largely overlooked. In particular, new insight into drug resistance associated with the 3-D tumor microenvironment has called into question the validity of 2-D models for prediction of in vivo anti-tumor activity. In this work, a series of complementary assays was established for evaluating the in vitro efficacy of docetaxel (DTX) -loaded block copolymer micelles (BCM+DTX) and Taxotere® in 3-D multicellular tumor spheroid (MCTS) cultures. Spheroids were found to be significantly more resistant to treatment than monolayer cultures in a cell line dependent manner. Limitations in treatment efficacy were attributed to mechanisms of resistance associated with properties of the spheroid microenvironment. DTX-loaded micelles demonstrated greater therapeutic effect in both monolayer and spheroid cultures in comparison to Taxotere®. Overall, this work demonstrates the use of spheroids as a viable platform for the evaluation of nanomedicines in conditions which more closely reflect the in vivo tumor microenvironment relative to traditional monolayer cultures. By adaptation of traditional cell-based assays, spheroids have the potential to serve as intermediaries between traditional in vitro and in vivo models for high-throughput assessment of therapeutic candidates.  相似文献   

10.
Summary Neoplastic cells acquire multidrug resistance as they assemble into multicellular spheroids. Image analysis and Monte Carlo simulation provided an insight into the adhesion and motility events during spheroid restructuring in liquid-overlay culture of DU 145 and LNCaP human prostate cancer cells. Irregularly shaped, two-dimensional aggregates restructured through incremental cell movements into three-dimensional spheroids. Of the two cultures examined, restructuring was more pronounced for DU 145 aggregates. Motile DU 145 cells formed spheroids with a minimum cell overlay of 30% for 25-mers as estimated by simulation versus 5% for adhesive LNCaP cells in aggregates of the same size. Over 72 h, the texture ratio increased from 0.55±0.05 for DU 145 aggregates with projected areas exceeding 2000 μm2 to a value approaching 0.75±0.02 (P<0.05). For LNCaP aggregates of comparable size, the increase in texture ratio was more modest, less than 15% during the same time period (P<0.05). Combined, these data suggest that motility events govern the overall rate of spheroid restructuring. This information has application to the chemosensitization of solid tumors and kinetic modeling of spheroid production.  相似文献   

11.
Cancer cell spheroids have been shown to be more physiologically relevant to native tumor tissue than monolayer 2D culture cells. Due to enhanced intercellular communications among cells in spheroids, spheroid secreted exosomes which account for transcellular transportation should exceed those from 2D cell culture and may display a different expression pattern of miRNA or protein. To test this, we employed a widely used pancreatic cancer cell line, PANC-1, to create 3D spheroids and compared exosomes generated by both 2D cell culture and 3D PANC-1 spheroids. We further measured and compared exosomal miRNA and GPC-1 protein expression with qRT-PCR and enzyme-linked immunosorbent assay, respectively. It showed that PANC-1 cells cultured in 3D spheroids can produce significantly more exosomes than PANC-1 2D cells and exosomal miRNA and GPC-1 expression derived from spheroids show more features relevant to the progression of pancreatic cancer. These findings point to the potential importance of using spheroids as in vitro model to study cancer development and progression.  相似文献   

12.
Screening and initial characterization of anticancer drugs are typically performed using monolayer cultures of tumor cells. It is well established that such monolayer cultures do not represent the characteristics of 3-dimensional solid tumors. The multicellular tumor spheroid model is of intermediate complexity between in vivo tumors and in vitro monolayer cultures and would be more suitable for drug screening. The authors describe a procedure in which multicellular spheroids are used to screen for compounds that induce tumor cell apoptosis. Multicellular spheroids were generated in 96-well plates, and apoptosis was determined using the M30-Apoptosense enzyme-linked immunosorbent assay method. A Z' factor of approximately 0.5 was observed for HCT116 colon carcinoma spheroids using staurosporine to induce apoptosis. This procedure is attractive for secondary screening of hits from larger cell-based screens.  相似文献   

13.
To obtain a multicellular MCF-7 spheroid model to mimic the three-dimensional (3D) of tumors, the microwell liquid overlay (A) and hanging-drop/agar (B) methods were first compared for their technical parameters. Then a method for embedding spheroids within collagen was optimized. For method A, centrifugation assisted cells form irregular aggregates but not spheroids. For method B, an extended sedimentation period of over 24 h for cell suspensions and increased viscosity of the culture medium using methylcellulose were necessary to harvest a dense and regular cell spheroid. When the number was less than 5000 cells/drop, embedded spheroids showed no tight cores and higher viability than the unembedded. However, above 5000 cells/drop, cellular viability of embedded spheroids was not significantly different from unembedded spheroids and cells invading through the collagen were in a sun-burst pattern with tight cores. Propidium Iodide staining indicated that spheroids had necrotic cores. The doxorubicin cytotoxicity demonstrated that spheroids were less susceptible to DOX than their monolayer cells. A reliable and reproducible method for embedding spheroids using the hanging-drop/agarose method within collagen is described herein. The cell culture model can be used to guide experimental manipulation of 3D cell cultures and to evaluate anticancer drug efficacy.  相似文献   

14.
Mammalian cells growing as multicell spheroids, an in vitro model of tumor microregions, have been shown previously to be more resistant than single cells from monolayer cultures to killing by ionizing radiation, hyperthermia, ultrasound, and chemotherapeutic drugs. Although the mechanisms by which cells in spheroids acquire these increased resistances are unknown, available evidence has indicated that intercellular contact mediates the process for ionizing radiation. This investigation was undertaken to evaluate the role of intercellular contact produced during growth of small spheroids on the sensitivity of EMT6/Ro mouse mammary tumor cells to moderate hyperthermia. Increased thermoresistance developed in small spheroids (approximately 70 micron diameter, 25 cells/spheroid), as measured by colony formation, after exposures to different temperatures in the range of 37 to 45 degrees C for periods less than or equal to 2 hr and at 42.5 degrees C for less than or equal to 8 hr. Experiments were performed to determine the relative contributions to this increased thermoresistance of 1) the extent of intercellular contact in spheroids of different cellular multiplicities, 2) differences in membrane damage influenced by trypsin heat treatment sequence, and 3) physiological changes associated with growth of cells as spheroids in suspension compared to monolayer culture. Treatment with trypsin prior to heating sensitized cells to killing by hyperthermia but did not account for the differential thermoresistance between cells from spheroids and monolayers. Spheroid multiplicity in the range of 1.16 to 76.2 cells/spheroid had no significant effect on cell survival after hyperthermia. However, cells grown in spinner suspension culture were more thermoresistant than cells from monolayer cultures and nearly as thermoresistant as cells in spheroids. From these data we conclude that the greater thermoresistance of EMT/Ro cells in spheroids is the result of cellular physiological changes associated with growth in suspension and is not mediated by intercellular contact.  相似文献   

15.
Multicellular three-dimensional (3D) spheroids allow intimate cell–cell communication and cell–extracellular matrix interaction. Thus, 3D cell spheroids better mimic microenvironment in vivo than two-dimensional (2D) monolayer cultures. The purpose of this study was to evaluate the behaviors of human dental pulp cells (DPCs) cultured on chitosan and polyvinyl alcohol (PVA) membranes. The protein expression of hypoxia-inducible factor 1-α (HIF-1α) and vascular endothelial growth factor (VEGF), and the migration ability of the DPCs from 2D versus 3D environments were investigated. The results showed that both chitosan and PVA membranes support DPCs aggregation to form multicellular spheroids. In comparison to 2D cultures on tissue culture polystyrene, DPC spheroids exhibited higher protein expression of HIF-1α and VEGF. The treatment with YC-1 (inhibitor to HIF-1α) blocked the upregulation of VEGF, indicating a downstream event to HIF-1α expression. When DPC spheroids were collected and subjected to the transwell assay, the cells growing outward from 3D spheroids showed greater migration ability than those from 2D cultures. Moreover, DPCs aggregation and spheroid formation on chitosan membrane were abolished by Y-27632 (inhibitor to Rho-associated kinases), whereas the inhibitory effect did not exist on PVA membrane. This suggests that the mechanism regulating DPCs aggregation and spheroid formation on chitosan membrane is involved with the Rho-associated kinase signaling pathway. In summary, the multicellular spheroid structure was beneficial to the protein expression of HIF-1α and VEGF in DPCs and enhanced the migration ability of the cells climbing from spheroids. This study showed a new perspective in exploring novel strategies for DPC-based research and application.  相似文献   

16.
Multicellular tumor spheroids represent a 3D in vitro model that mimics solid tumor essential properties including assembly and development of extracellular matrix and nutrient, oxygen and proliferation gradients. In the present study, we analyze the impact of 3D spatial organization of HER2-overexpressing breast cancer cells on the response to Trastuzumab. We cultured human mammary adenocarcinoma cell lines as spheroids with the hanging drop method and we observed a gradient of proliferating, quiescent, hypoxic, apoptotic and autophagic cells towards the inner core. This 3D organization decreased Trastuzumab sensitivity of HER2 over-expressing cells compared to monolayer cell cultures. We did not observe apoptosis induced by Trastuzumab but found cell arrest in G0/G1 phase. Moreover, the treatment downregulated the basal apoptosis only found in tumor spheroids, by eliciting protective autophagy. We were able to increase sensitivity to Trastuzumab by autophagy inhibition, thus exposing the interaction between apoptosis and autophagy. We confirmed this result by developing a resistant cell line that was more sensitive to autophagy inhibition than the parental BT474 cells. In summary, the development of Trastuzumab resistance relies on the balance between death and survival mechanisms, characteristic of 3D cell organization. We propose the use of spheroids to further improve the understanding of Trastuzumab antitumor activity and overcome resistance.  相似文献   

17.
Chemoresistance is one of the most critical prognostic factors in osteosarcoma, and elucidation of the molecular backgrounds of chemoresistance may lead to better clinical outcomes. Spheroid cells resemble in vivo cells and are considered an in vitro model for the drug discovery. We found that spheroid cells displayed more chemoresistance than conventional monolayer cells across 11 osteosarcoma cell lines. To investigate the molecular mechanisms underlying the resistance to chemotherapy, we examined the proteomic differences between the monolayer and spheroid cells by 2D‐DIGE. Of the 4762 protein species observed, we further investigated 435 species with annotated mass spectra in the public proteome database, Genome Medicine Database of Japan Proteomics. Among the 435 protein species, we found that 17 species exhibited expression level differences when the cells formed spheroids in more than five cell lines and four species out of these 17 were associated with spheroid‐formation associated resistance to doxorubicin. We confirmed the upregulation of cathepsin D in spheroid cells by western blotting. Cathepsin D has been implicated in chemoresistance of various malignancies but has not previously been implemented in osteosarcoma. Our study suggested that the spheroid system may be a useful tool to reveal the molecular backgrounds of chemoresistance in osteosarcoma.  相似文献   

18.
During the growth of EMT6/Ro mammary tumor multicell spheroids, a large number of cells are shed into the suspension medium. The rate of cell shedding was 218 cells per square millimeter of spheroid surface per hour, or up to 1.5% of the total spheroid cell content per hour. Shed cells had a clonogenic capacity equal to that of exonential monolayer cultures and were further characterized by volume distribution, mitotic index, flow cytoflurometry, and autoradiography. The results indicated that cells are released from the spheroid surface at mitosis, presumably due to a loosening of the cell-to-cell attachment during this cycle phase. These mitotic cells, when placed in monolayer culture, attached and grew synchronously with a cell cycle time of about 13 hours. Shed cells kept in suspension culture had a similar cell cycle time, but these cells reaggregated immediately after mitosis. The results indicated that cell shedding and reaggregation both occur near the time of mitosis and are intrinsic factors regulating the initiation and subsequent growth of multicell spheroids. Although these studies were done with spheroids cultured in vitro, shedding of mitotic cells may play an important role in the in vivo process of metastasis.  相似文献   

19.
The acquired drug chemoresistance represents the main challenge of the ovarian cancer treatment. In addition, the absence of an adequate in vitro model able to reproduce the native tumor environment can contribute to the poor success rate of pre-clinical studies of new compounds. Three-dimensional (3D) culture models have been recently used for drug screening purposes due to their ability to reproduce the main characteristics of in vivo solid tumors. Here we describe the establishment and characterization of 3D ovarian cancer spheroids using different adenocarcinoma tumor cell lines (SKOV-3 and OVCAR-3 cells) in two different 3D scaffold-free methods: forced-floating in ultra-low attachment (ULA) plates and hanging drop (HD). Spheroids were evaluated in both 3D cultures in order to establish the best condition to perform the drug response analysis with Paclitaxel, a common drug used to treat ovarian cancer. SKOV-3 and OVCAR-3 spheroids with the desired characteristics (roundness close to 1.0 and diameter in the 200–500 μm range) were obtained using both methods after addition of the methylcellulose (MC) in the culture medium (0.25% and 0.5%, w/v). We also observed the presence of microvilli on the surface of the spheroids, higher presence of apoptotic cells and higher drug resistance, when compared with 2D cultures. The 3D cultures obtained seem to provide more reliable results in terms of drug response than those provided by 2D monolayer culture. The forced floating method was considered more suitable and straightforward to generate ovarian cancer spheroids for drug screening/cytotoxicity assays.  相似文献   

20.
Clinically relevant in vitro methods are needed to identify new cancer drugs for solid tumors. We report on a new 3-D spheroid cell culture system aimed to mimic the properties of solid tumors in vivo. The colon cancer cell lines HCT-116 wt and HCT-116 wt/GFP were grown as monolayers and for 3 or 6 days on 96-well NanoCulture® plates to form spheroids. Expression of surface markers, genes and hypoxia were assessed to characterize the spheroids and drug induced cytotoxicity was evaluated based on fluorescein diacetate (FDA) conversion by viable cells to fluorescent fluorescein or by direct measurement of fluorescence of GFP marked cells after a 72 h drug incubation. The cells reproducibly formed spheroids in the NanoCulture® plates with tight cell-attachment after 6 days. Cells in spheroids showed geno- and phenotypical properties reminiscent of hypoxic stem cells. Monolayer cultured cells were sensitive to standard and investigational drugs, whereas the spheroids gradually turned resistant. Similar results for cytotoxicity were observed using simplified direct measurement of fluorescence of GFP marked cells compared with FDA incubation. In conclusion, this new 3-D spheroid cell culture system provides a convenient and clinically relevant model for the identification and characterization of cancer drugs for solid tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号