首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The GATC-specific restriction and modification activities were analyzed in 11 major bacterial representatives of ruminal microflora. Modification phenotype was observed in 13 out of 40 ruminal strains. MboI isoschizomeric restriction endonucleases were detected in 10 bacterial strains tested; three strains lacked any detectable corresponding endonuclease activity. The only examined strain of Mitsuokella multi-acida was found to possess a different type of endonuclease activity. This is the first report on restriction activity in ruminal treponemes M. multiacida and Megasphaera elsdenii.  相似文献   

2.
A high frequency of type II restriction endonuclease activities was detected inSelenomonas ruminantium but not in other rumen bacteria tested. Eight different restriction endonucleases were characterized in 17 strains coming from genetically homogeneous local population. Chromosomal DNA isolated fromS. ruminantium strains was found to be refractory to cleavage by various restriction enzymes, implying the presence of methylase activities additional to those required for protection against the cellular endonucleases. The presence of Dam methylation was detected inS. ruminantium strains as well as in several other species belonging to theSporomusa subbranch of low G+C Gram-positive bacteria (Megasphaera elsdenii, Mitsuokella multiacidus).  相似文献   

3.
Tetracycline resistant (TcR) strains of three of the major species of strictly anaerobic rumen bacteria Megasphaera elsdenii, Selenomonas ruminantium and Butyrivibrio fibrisolvens , were recovered with an isolation medium containing 20 μg/ml tetracycline. Only two of 14 strains of these species from other sources, isolated without antibiotic selection, showed tetracycline resistance. Evidence was found for the presence of plasmids in two tetracycline-resistant strains of M. elsdenii , and in some strains of S. ruminantium.  相似文献   

4.
Genomic methylation: a tool for typing Helicobacter pylori isolates   总被引:1,自引:0,他引:1  
The genome sequences of three Helicobacter pylori strains revealed an abundant number of putative restriction and modification (R-M) systems within a small genome (1.60 to 1.67 Mb). Each R-M system includes an endonuclease that cleaves a specific DNA sequence and a DNA methyltransferase that methylates either adenosine or cytosine within the same DNA sequence. These are believed to be a defense mechanism, protecting bacteria from foreign DNA. They have been classified as selfish genetic elements; in some instances it has been shown that they are not easily lost from their host cell. Possibly because of this phenomenon, the H. pylori genome is very rich in R-M systems, with considerable variation in potential recognition sequences. For this reason the protective aspect of the methyltransferase gene has been proposed as a tool for typing H. pylori isolates. We studied the expression of H. pylori methyltransferases by digesting the genomic DNAs of 50 strains with 31 restriction endonucleases. We conclude that methyltransferase diversity is sufficiently high to enable the use of the genomic methylation status as a typing tool. The stability of methyltransferase expression was assessed by comparing the methylation status of genomic DNAs from strains that were isolated either from the same patient at different times or from different stomach locations (antrum and corpus). We found a group of five methyltransferases common to all tested strains. These five may be characteristic of the genetic pool analyzed, and their biological role may be important in the host/bacterium interaction.  相似文献   

5.
Analysis of restriction and modification activities in natural population of Selenomonas ruminantium have revealed the prevalence of CTGCAG (Pst I isoschizomers) recognizing restriction and/or modification systems in these bacteria. Pst I isoschizomeric restriction endonucleases were detected in 4 out of 15 strains tested. In one strain, the Pst I isoschizomeric restriction system was accompanied by another restriction and modification system recognizing GAATTC sequence (Eco RI isoschizomer). Four other strains contained CTGCAG specific methylases which lacked cognate endo-nuclease activities. Presence of identical restriction and modification systems in both of subspecies of S. ruminantium, as well as the occurrence of Pst I isoschizomers in various combinations, indicate the possibility of horizontal transfer of genes coding for these systems.  相似文献   

6.
Type II restriction-modification (R-M) systems encode a restriction endonuclease that cleaves DNA at specific sites, and a methyltransferase that modifies same sites protecting them from restriction endonuclease cleavage. Type II R-M systems benefit bacteria by protecting them from bacteriophages. Many type II R-M systems are plasmid-based and thus capable of horizontal transfer. Upon the entry of such plasmids into a naïve host with unmodified genomic recognition sites, methyltransferase should be synthesized first and given sufficient time to methylate recognition sites in the bacterial genome before the toxic restriction endonuclease activity appears. Here, we directly demonstrate a delay in restriction endonuclease synthesis after transformation of Escherichia coli cells with a plasmid carrying the Esp1396I type II R-M system, using single-cell microscopy. We further demonstrate that before the appearance of the Esp1396I restriction endonuclease the intracellular concentration of Esp1396I methyltransferase undergoes a sharp peak, which should allow rapid methylation of host genome recognition sites. A mathematical model that satisfactorily describes the observed dynamics of both Esp1396I enzymes is presented. The results reported here were obtained using a functional Esp1396I type II R-M system encoding both enzymes fused to fluorescent proteins. Similar approaches should be applicable to the studies of other R-M systems at single-cell level.  相似文献   

7.
8.
Six species of ruminal bacteria were surveyed for the phosphoenolpyruvate (PEP)-dependent phosphorylation of glucose. Selenomonas ruminantium HD4, Streptococcus bovis JB1, and Megasphaera elsdenii B159 all showed significant activity, but Butyrivibrio fibrisolvens 49, Bacteroides succinogenes S85, and Bacteroides ruminicola B1(4) showed low rates of PEP-dependent phosphorylation and much higher rates in the presence of ATP. S. ruminantium HD4, S. bovis JB1, and M. elsdenii B159 also used PEP to phosphorylate the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DG). Rates of 2-DG phosphorylation with ATP were negligible for S. bovis JB1 and M. elsdenii B159, but toluene-treated cells of S. ruminantium HD4 phosphorylated 2-DG in the presence of ATP as well as PEP. Cell-free extracts of S. ruminantium HD4 used ATP but not PEP to phosphorylate glucose and 2-DG. Since PEP could serve as a phosphoryl donor in toluene-treated cells but not in cell-free extracts, there was evidence for membrane and hence phosphotransferase system involvement in the PEP-dependent activity. The ATP-dependent phosphorylating enzymes from S. ruminantium HD4 and S. bovis JB1 had molecular weights of approximately 48,000 and were not inhibited by glucose 6-phosphate. Based on these criteria, they were glucokinases rather than hexokinases. The S. ruminantium HD4 glucokinase was competitively inhibited by 2-DG and mannose, sugars that differ from glucose in the C-2 position. Since 2-DG was a competitive inhibitor of glucose, the same enzyme probably phosphorylates both sugars. The S. bovis JB1 glucokinase was not inhibited by either 2-DG or mannose and had a higher Km and Vmax for glucose.  相似文献   

9.
Six species of ruminal bacteria were surveyed for the phosphoenolpyruvate (PEP)-dependent phosphorylation of glucose. Selenomonas ruminantium HD4, Streptococcus bovis JB1, and Megasphaera elsdenii B159 all showed significant activity, but Butyrivibrio fibrisolvens 49, Bacteroides succinogenes S85, and Bacteroides ruminicola B1(4) showed low rates of PEP-dependent phosphorylation and much higher rates in the presence of ATP. S. ruminantium HD4, S. bovis JB1, and M. elsdenii B159 also used PEP to phosphorylate the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DG). Rates of 2-DG phosphorylation with ATP were negligible for S. bovis JB1 and M. elsdenii B159, but toluene-treated cells of S. ruminantium HD4 phosphorylated 2-DG in the presence of ATP as well as PEP. Cell-free extracts of S. ruminantium HD4 used ATP but not PEP to phosphorylate glucose and 2-DG. Since PEP could serve as a phosphoryl donor in toluene-treated cells but not in cell-free extracts, there was evidence for membrane and hence phosphotransferase system involvement in the PEP-dependent activity. The ATP-dependent phosphorylating enzymes from S. ruminantium HD4 and S. bovis JB1 had molecular weights of approximately 48,000 and were not inhibited by glucose 6-phosphate. Based on these criteria, they were glucokinases rather than hexokinases. The S. ruminantium HD4 glucokinase was competitively inhibited by 2-DG and mannose, sugars that differ from glucose in the C-2 position. Since 2-DG was a competitive inhibitor of glucose, the same enzyme probably phosphorylates both sugars. The S. bovis JB1 glucokinase was not inhibited by either 2-DG or mannose and had a higher Km and Vmax for glucose.  相似文献   

10.
Type I restriction-modification (R-M) enzymes are composed of three different subunits, of which HsdS determines DNA specificity, HsdM is responsible for DNA methylation and HsdR is required for restriction. The HsdM and HsdS subunits can also form an independent DNA methyltransferase with a subunit stoichiometry of M2S1. We found that the purified Eco R124I R-M enzyme was a mixture of two species as detected by the presence of two differently migrating specific DNA-protein complexes in a gel retardation assay. An analysis of protein subunits isolated from the complexes indicated that the larger species had a stoichiometry of R2M2S1and the smaller species had a stoichiometry of R1M2S1. In vitro analysis of subunit assembly revealed that while binding of the first HsdR subunit to the M2S1complex was very tight, the second HsdR subunit was bound weakly and it dissociated from the R1M2S1complex with an apparent K d of approximately 2.4 x 10(-7) M. Functional assays have shown that only the R2M2S1complex is capable of DNA cleavage, however, the R1M2S1complex retains ATPase activity. The relevance of this situation is discussed in terms of the regulation of restriction activity in vivo upon conjugative transfer of a plasmid-born R-M system into an unmodified host cell.  相似文献   

11.
AIMS: Polish isolates of pectinolytic bacteria from the species Pectobacterium carotovorum were screened for the presence of a DNA restriction-modification (R-M) system. METHODS AND RESULTS: Eighty-nine strains of P. carotovorum were isolated from infected potato plants. Sixty-six strains belonged to P. carotovorum ssp. atrosepticum and 23 to P. carotovorum ssp. carotovorum. The presence of restriction enzyme Pca17AI, which is an isoschizomer of EcoRII endonuclease, was observed in all isolates of P. c. atrosepticum but not in P. c. carotovorum. The biochemical properties, PCR amplification, and sequences of the Pca17AI restriction endonuclease and methyltransferase genes were compared with the prototype EcoRII R-M system genes. Only when DNA isolated from cells of P. c. atrosepticum was used as a template, amplification of a 680 bp homologous to the gene coding EcoRII endonuclease. CONCLUSIONS: Endonuclease Pca17AI, having a relatively low temperature optimum, was identified. PCR amplification revealed that the nucleotide sequence of genes for EcoRII and Pca17AI R-M are different. Dcm methylation was observed in all strains of Pectobacterium and other Erwinia species tested. The sequence of a DNA fragment coding Dcm methylase in P. carotovorum was different from that of Escherichia coli. SIGNIFICANCE AND IMPACT OF THE STUDY: Pca17AI is the first psychrophilic isoschizomer of EcoRII endonuclease. The presence of specific Dcm methylation in chromosomal DNA isolated from P. carotovorum is described for the first time. A 680 bp PCR product, unique for P. c. atrosepticum strains, could serve as a molecular marker for detection of these bacteria in environmental samples.  相似文献   

12.
Restriction enzymes are well known as reagents widely used by molecular biologists for genetic manipulation and analysis, but these reagents represent only one class (type II) of a wider range of enzymes that recognize specific nucleotide sequences in DNA molecules and detect the provenance of the DNA on the basis of specific modifications to their target sequence. Type I restriction and modification (R-M) systems are complex; a single multifunctional enzyme can respond to the modification state of its target sequence with the alternative activities of modification or restriction. In the absence of DNA modification, a type I R-M enzyme behaves like a molecular motor, translocating vast stretches of DNA towards itself before eventually breaking the DNA molecule. These sophisticated enzymes are the focus of this review, which will emphasize those aspects that give insights into more general problems of molecular and microbial biology. Current molecular experiments explore target recognition, intramolecular communication, and enzyme activities, including DNA translocation. Type I R-M systems are notable for their ability to evolve new specificities, even in laboratory cultures. This observation raises the important question of how bacteria protect their chromosomes from destruction by newly acquired restriction specifities. Recent experiments demonstrate proteolytic mechanisms by which cells avoid DNA breakage by a type I R-M system whenever their chromosomal DNA acquires unmodified target sequences. Finally, the review will reflect the present impact of genomic sequences on a field that has previously derived information almost exclusively from the analysis of bacteria commonly studied in the laboratory.  相似文献   

13.
Many promiscuous plasmids encode the antirestriction proteins ArdA (alleviation of restriction of DNA) that specifically affect the restriction activity of heterooligomeric type I restriction-modification (R-M) systems in Escherichia coli cells. In addition, a lot of the putative ardA genes encoded by plasmids and bacterial chromosomes are found as a result of sequencing of complete genomic sequences, suggesting that ArdA proteins and type I R-M systems that seem to be widespread among bacteria may be involved in the regulation of gene transfer among bacterial genomes. Here, the mechanism of antirestriction action of ArdA encoded by IncI plasmid ColIb-P9 has been investigated in comparison with that of well-studied T7 phage-encoded antirestriction protein Ocr using the mutational analysis, retardation assay and His-tag affinity chromatography. Like Ocr, ArdA protein was shown to be able to efficiently interact with EcoKI R-M complex and affect its in vivo and in vitro restriction activity by preventing its interaction with specific DNA. However, unlike Ocr, ArdA protein has a low binding affinity to EcoKI Mtase and the additional C-terminal tail region (VF-motif) is needed for ArdA to efficiently interact with the type I R-M enzymes. It seems likely that this ArdA feature is a basis for its ability to discriminate between activities of EcoKI Mtase (modification) and complete R-M system (restriction) which may interact with unmodified DNA in the cells independently. These findings suggest that ArdA may provide a very effective and delicate control for the restriction and modification activities of type I systems and its ability to discriminate against DNA restriction in favour of the specific modification of DNA may give some advantage for efficient transmission of the ardA-encoding promiscuous plasmids among different bacterial populations.  相似文献   

14.
Helicobacter pylori, Gram-negative, curved bacteria colonizing the human stomach, possess strain-specific complements of functional restriction-modification (R-M) systems. Restriction-modification systems have been identified in most bacterial species studied and are believed to have evolved to protect the host genome from invasion by foreign DNA. The large number of R-Ms homologous to those in other bacterial species and their strain-specificity suggest that H. pylori may have horizontally acquired these genes. A type IIs restriction-modification system, hpyIIRM, was active in two out of the six H. pylori strains studied. We demonstrate now that in most strains lacking M.HpyII function, there is complete absence of the R-M system. Direct DNA repeats of 80 bp flanking the hpyIIRM system allow its deletion, resulting in an "empty-site" genotype. We show that strains possessing this empty-site genotype and strains with a full but inactive hpyIIRM can reacquire the hpyIIRM cassette and functional activity through natural transformation by DNA from the parental R-M+ strain. Identical isolates divergent for the presence of an active HpyII R-M pose different restriction barriers to transformation by foreign DNA. That H. pylori can lose HpyII R-M function through deletion or mutation, and can horizontally reacquire the hpyIIRM cassette, is, in composite, a novel mechanism for R-M regulation, supporting the general hypothesis that H. pylori populations use mutation and transformation to regulate gene function.  相似文献   

15.
Cutibacterium acnes (C. acnes) is a gram-positive bacterium and a member of the human skin microbiome. Despite being the most abundant skin commensal, certain members have been associated with common inflammatory disorders such as acne vulgaris. The availability of the complete genome sequences from various C. acnes clades have enabled the identification of putative methyltransferases, some of them potentially belonging to restriction-modification (R-M) systems which protect the host of invading DNA. However, little is known on whether these systems are functional in the different C. acnes strains. To investigate the activity of these putative R-M and their relevance in host protective mechanisms, we analyzed the methylome of six representative C. acnes strains by Oxford Nanopore Technologies (ONT) sequencing. We detected the presence of a 6-methyladenine modification at a defined DNA consensus sequence in strain KPA171202 and recombinant expression of this R-M system confirmed its methylation activity. Additionally, a R-M knockout mutant verified the loss of methylation properties of the strain. We studied the potential of one C. acnes bacteriophage (PAD20) in killing various C. acnes strains and linked an increase in its specificity to phage DNA methylation acquired upon infection of a methylation competent strain. We demonstrate a therapeutic application of this mechanism where phages propagated in R-M deficient strains selectively kill R-M deficient acne-prone clades while probiotic ones remain resistant to phage infection.  相似文献   

16.
Nucleoside triphosphate-dependent restriction enzymes   总被引:13,自引:8,他引:5       下载免费PDF全文
The known nucleoside triphosphate-dependent restriction enzymes are hetero-oligomeric proteins that behave as molecular machines in response to their target sequences. They translocate DNA in a process dependent on the hydrolysis of a nucleoside triphosphate. For the ATP-dependent type I and type III restriction and modification systems, the collision of translocating complexes triggers hydrolysis of phosphodiester bonds in unmodified DNA to generate double-strand breaks. Type I endonucleases break the DNA at unspecified sequences remote from the target sequence, type III endonucleases at a fixed position close to the target sequence. Type I and type III restriction and modification (R-M) systems are notable for effective post-translational control of their endonuclease activity. For some type I enzymes, this control is mediated by proteolytic degradation of that subunit of the complex which is essential for DNA translocation and breakage. This control, lacking in the well-studied type II R-M systems, provides extraordinarily effective protection of resident DNA should it acquire unmodified target sequences. The only well-documented GTP-dependent restriction enzyme, McrBC, requires methylated target sequences for the initiation of phosphodiester bond cleavage.  相似文献   

17.
Recognition sites for type II restriction and modification enzymes in genomes of several bacteria are recognized as semi-palindromic motifs and are avoided at a significant degree. The key idea of contrast word analysis with respect to RMS recognition sites, is that under-represented words are likely to be selected against. Starting from over- or underrepresented words corresponding to RMS recognition sites in specific clades, the specificity of unknown R-M systems can be highlighted. Among the known restriction enzymes, that are described in the REBASE database of restriction and modification systems, many of their recognition sites are still uncharacterized. Eventually, this motivates studies aimed at assessing horizontal transferring events of RMS in micro-organisms through the analysis of word usage biases in well-determined genomic regions. A probabilistic model is built on a first-order Markovian chain. Statistics on the k-neighborhood of a word is carried out to assess the biological significance of a genomic motif. Efficient word counting procedures have been implemented and statistics are used for the assessment of the significance of individual words in large sequences. On the basis of the set of most avoided words, and in accordance to the IUPAC coding standards, suggestions are made regarding potential recognition sequences. In certain cases, a comparison of avoided palindromic words in taxonomically related bacteria shows a pattern of relatedness of their R-M systems. For strengthening this analysis, the primary protein structure of all type II R-M systems known in REBASE have been blasted against the nr-GENBANK database. The combination of these analyses has revealed some interesting examples of possible horizontal transfer events of R-M systems.  相似文献   

18.
Genetic transformation of bacteria harboring multiple Restriction-Modification (R-M) systems is often difficult using conventional methods. Here, we describe a mimicking-of-DNA-methylation-patterns (MoDMP) pipeline to address this problem in three difficult-to-transform bacterial strains. Twenty-four putative DNA methyltransferases (MTases) from these difficult-to-transform strains were cloned and expressed in an Escherichia coli strain lacking all of the known R-M systems and orphan MTases. Thirteen of these MTases exhibited DNA modification activity in Southwestern dot blot or Liquid Chromatography–Mass Spectrometry (LC–MS) assays. The active MTase genes were assembled into three operons using the Saccharomyces cerevisiae DNA assembler and were co-expressed in the E. coli strain lacking known R-M systems and orphan MTases. Thereafter, results from the dot blot and restriction enzyme digestion assays indicated that the DNA methylation patterns of the difficult-to-transform strains are mimicked in these E. coli hosts. The transformation of the Gram-positive Bacillus amyloliquefaciens TA208 and B. cereus ATCC 10987 strains with the shuttle plasmids prepared from MoDMP hosts showed increased efficiencies (up to four orders of magnitude) compared to those using the plasmids prepared from the E. coli strain lacking known R-M systems and orphan MTases or its parental strain. Additionally, the gene coding for uracil phosphoribosyltransferase (upp) was directly inactivated using non-replicative plasmids prepared from the MoDMP host in B. amyloliquefaciens TA208. Moreover, the Gram-negative chemoautotrophic Nitrobacter hamburgensis strain X14 was transformed and expressed Green Fluorescent Protein (GFP). Finally, the sequence specificities of active MTases were identified by restriction enzyme digestion, making the MoDMP system potentially useful for other strains. The effectiveness of the MoDMP pipeline in different bacterial groups suggests a universal potential. This pipeline could facilitate the functional genomics of the strains that are difficult to transform.  相似文献   

19.
The microbial populations of the rumens of seaweed-fed and pasture-fed Orkney sheep were examined. The populations in the pasture-fed sheep were similar to those of other domestic ruminants fed on land plants, but those of the seaweed-fed animals showed major differences in the dominant species. Total ciliate populations were quantitatively similar, but in the seaweed-fed animals Dasytricha ruminantium was one of the most dominant species. No phycomycete fungi or cellulolytic bacteria were found in the seaweed-fed animals, and the bacterial population was dominated by Streptococcus bovis, Selenomonas ruminantium, But yrivibrio fibrisol-vens and lactate-utilizing species. Electron microscopy revealed that spirochaetes and an unidentified filamentous bacterium were probably of major significance in seaweed digestion. The ability of bacterial strains from both groups of animals to metabolize plant and algal constituents was examined.  相似文献   

20.
Thirty-five strains of ruminal bacteria belonging to the former Butyrivibrio fibrisolvens species were screened for the presence of site-specific restriction endonuclease and modification methyltransferase activities. Seven strains possessed endonuclease activities detectable in crude cell extracts. The recognition sequences and optimal reaction conditions for seven of them were determined. Five enzymes were found to be isoschizomers of type II endonucleases (EcoRV, NsiI, AseI (2x) and SauI), one was type IIS (FokI) and two remained unknown. The optimal reaction buffer was found to be a low ionic strength buffer and all enzymes possessed sufficient activity at 39 degrees C. The presence of DNA modification among all strains was also determined. Most of the methylation activities correlated with restriction activities, yet some strains possessed unaccompanied modification methyltransferases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号