首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Mucous cells in the basal disk of hydra contain a peroxidase-like enzyme allowing specific staining of these cells with substrates for peroxidases. The peroxidase activity provides an excellent marker for foot mucous cell, differentiation and was used to follow the reappearance of footspecific cells during foot regeneration after amputation. By choosing the appropriate either soluble or precipitable substrate the peroxidase reaction was used both for a qualitative and for a quantitative evaluation of foot-specific differentiation in hydra. For histological studies diaminobenzidien was found to be a suitable substrate which forms a dark brown precipitate within the cells containing the peroxidase activity. For a quantitative evaluation of foot regeneration the soluble substrate 2,2-azino-di(3-ethyl-benzthiazoline-sulfonic acid-6) ammonium salt was used which after reaction with the enzyme gives rise to a diffusible green reaction product the concentration of which can be measured by its specific absorption at 415 nm. Based on the diffusible enzyme product a new quantitative assay for foot regenration was developed and applied to confirm the effect and specificity of morphogenetic substances which either inhibit or activate foot or head regeneration in hydra.  相似文献   

2.
In Hydra, developmental processes are permanently active to maintain a simple body plan consisting of a two-layered, radially symmetrical tube with two differentiated structures, head and foot. Foot formation is a dynamic process and includes terminal differentiation of gastric epithelial cells into mucous secreting basal disc cells. A well-established marker for this highly specialized cell type is a locally expressed peroxidase (Hoffmeister et al. 1985). Based on the foot-specific peroxidase activity, the gene PPOD1 has been identified (Hoffmeister-Ullerich et al. 2002). Unexpectedly, this approach led to the identification of a second gene, PPOD2, with high sequence similarity to PPOD1 but a strikingly different expression pattern. Here, we characterize PPOD2 in more detail and show that both genes, PPOD1 and PPOD2, are members of a gene family with differential complexity and expression patterns in different Hydra species. At the genomic level, differences in gene number and structure within the PPOD gene family, even among closely related species, support a recently proposed phylogeny of the genus Hydra and point to unexpected genomic plasticity within closely related species of this ancient metazoan taxon. Electronic supplementary material Supplementary material is available in the online version of this article at  相似文献   

3.
4.
5.
6.
Kumar S  Dutta A  Sinha AK  Sen J 《The FEBS journal》2007,274(5):1290-1303
Catharanthus roseus (L.) G. Don produces a number of biologically active terpenoid indole alkaloids via a complex terpenoid indole alkaloid biosynthetic pathway. The final dimerization step of this pathway, leading to the synthesis of a dimeric alkaloid, vinblastine, was demonstrated to be catalyzed by a basic peroxidase. However, reports of the gene encoding this enzyme are scarce for C. roseus. We report here for the first time the cloning, characterization and localization of a novel basic peroxidase, CrPrx, from C. roseus. A 394 bp partial peroxidase cDNA (CrInt1) was initially amplified from the internodal stem tissue, using degenerate oligonucleotide primers, and cloned. The full-length coding region of CrPrx cDNA was isolated by screening a leaf-specific cDNA library with CrInt1 as probe. The CrPrx nucleotide sequence encodes a deduced translation product of 330 amino acids with a 21 amino acid signal peptide, suggesting that CrPrx is secretory in nature. The molecular mass of this unprocessed and unmodified deduced protein is estimated to be 37.43 kDa, and the pI value is 8.68. CrPrx was found to belong to a 'three intron' category of gene that encodes a class III basic secretory peroxidase. CrPrx protein and mRNA were found to be present in specific organs and were regulated by different stress treatments. Using a beta-glucuronidase-green fluorescent protein fusion of CrPrx protein, we demonstrated that the fused protein is localized in leaf epidermal and guard cell walls of transiently transformed tobacco. We propose that CrPrx is involved in cell wall synthesis, and also that the gene is induced under methyl jasmonate treatment. Its potential involvement in the terpenoid indole alkaloid biosynthetic pathway is discussed.  相似文献   

7.
8.
9.
Plant responses to high salt stress have been studied for several decades. However, the molecular mechanisms underlying these responses still elude us. In order to understand better the molecular mechanism related to NaCl stress in plants, we initiated the cloning of a large number of NaCl-induced genes in Arabidopsis. Here, we report the cloning of a cDNA encoding a novel Ca2+-binding protein, named AtCP1, which shares sequence similarities with calmodulins. AtCP1 exhibits, in particular, a high degree of amino acid sequence homology to the Ca2+-binding loops of the EF hands of calmodulin. However, unlike calmodulin, AtCP1 appears to have only three Ca2+-binding loops. We examined Ca2+ binding of the protein by a Ca2+-dependent electrophoretic mobility shift assay. A recombinant AtCP1 protein that was expressed in Escherichia coli did show a Ca2+-dependent electrophoretic mobility shift. To gain insight into the expression of the AtCP1 gene, northern blot analysis was carried out. The AtCP1 gene had a tissue-specific expression pattern: high levels of expression in flower and root tissues and nearly undetectable levels in leaves and siliques. Also, the expression of the AtCP1 gene was induced by NaCl treatment but not by ABA treatment. Finally, subcellular localization experiments using an AtCP1:smGFP fusion gene in soybean suspension culture cells and tobacco leaf protoplasts indicate that AtCP1 is most likely a cytosolic protein.  相似文献   

10.
Establishment of a lipid accumulation model in an insect cell line   总被引:2,自引:0,他引:2  
The study of adipocyte differentiation and lipid accumulation in insects has been limited by the lack of a system suitable for analysis of molecular mechanisms. Here, we describe the establishment of a model system of lipid accumulation in BmN4 cells, which are derived from silkworm ovary. In BmN4 cells, dexamethasone treatment induced accumulation of lipid, suppressed cellular proliferation, and caused the cells to form aggregates. We isolated the Bombyx mori fatty acid binding protein 1 gene (BmFABP1), which is the silkworm homologue of mouse Fabp4 (aP2), a marker of adipocyte differentiation in mammals. BmFABP1 expression was increased by dexamethasone treatment. We also isolated the BmFABP1 promoter, and found that it was activated by a combination of drugs that included dexamethasone. The demonstration of dexamethasone-stimulated lipid accumulation and BmFABP1 expression in BmN4 cells provides a useful model of inducible adipogenesis. This system should be valuable for investigation of the molecular mechanisms of fat body formation, adipocyte differentiation, and lipid accumulation in the silkworm and other Lepidopteran insects.  相似文献   

11.
12.
When C2C12 pluripotent mesenchymal precursor cells are treated with transforming growth factor beta1 (TGF-beta1), terminal differentiation into myotubes is blocked. Treatment with bone morphogenetic protein 2 (BMP-2) not only blocks myogenic differentiation of C2C12 cells but also induces osteoblast differentiation. The molecular mechanisms governing the ability of TGF-beta1 and BMP-2 to both induce ligand-specific responses and inhibit myogenic differentiation are not known. We identified Runx2/PEBP2alphaA/Cbfa1, a global regulator of osteogenesis, as a major TGF-beta1-responsive element binding protein induced by TGF-beta1 and BMP-2 in C2C12 cells. Consistent with the observation that Runx2 can be induced by either TGF-beta1 or BMP-2, the exogenous expression of Runx2 mediated some of the effects of TGF-beta1 and BMP-2 but not osteoblast-specific gene expression. Runx2 mimicked common effects of TGF-beta1 and BMP-2 by inducing expression of matrix gene products (for example, collagen and fibronectin), suppressing MyoD expression, and inhibiting myotube formation of C2C12 cells. For osteoblast differentiation, an additional effector, BMP-specific Smad protein, was required. Our results indicate that Runx2 is a major target gene shared by TGF-beta and BMP signaling pathways and that the coordinated action of Runx2 and BMP-activated Smads leads to the induction of osteoblast-specific gene expression in C2C12 cells.  相似文献   

13.
The IF3 gene was isolated by expression cloning from a cDNA library of mouse oocytes. This gene was revealed to have no homology to any known gene and its cDNA encodes a 202-amino acid protein that contains a signal-peptide sequence. Moreover, an IF3 isoform, IF3(2), was expressed in both liver and ovary. Its cDNA encoded a 92-amino acid protein contains a signal-peptide sequence, which may be an alternative splice and frameshift form of IF3. The mRNA of IF3s was expressed in oocytes, ovary, and liver. Moreover, the gene expression of IF3s was regulated in a development-dependent manner in preimplantation-embryo and liver. Both IF3(1) and IF3(2) isoforms induced the differentiation of 2T3 and ATDC5 cells to the osteogenic and chondrogenic phenotype, respectively, suggesting that IF3s may modulate the differentiation status. Our findings suggest that IF3 may be one of the secreted factors that regulate oogenesis and certain liver functions.  相似文献   

14.
Differential display in combination with a cDNA cloning approach were used to isolate a novel gene, spergen-2, which has an open reading frame of 1500 nucleotides and encodes a protein of 500 amino acids that contains ankyrin repeat motifs and a putative nuclear localization signal. Expression of spergen-2 is developmentally upregulated in testis. In situ hybridization revealed that spergen-2 mRNA is expressed in spermatocytes and round spermatids (steps 1-6). Immunohistochemical analysis with confocal laser-scanning microscopy demonstrated that spergen-2 protein is predominantly expressed in nuclei of late spermatocytes (stages IX-XIV) and spermatids (steps 1-11), indicating the restricted expression of spergen-2 during spermatogenesis. In nucleoplasm of spermatogenic cell nuclei, spergen-2 tends to localize in the interchromosome space with relatively low DNA density. These findings indicate a potential role of spergen-2 in spermatogenesis, especially in cell differentiation from late pachytene spermatocytes to spermatids or in early spermatid differentiation.  相似文献   

15.
16.
17.
The Gateway technology cloning system and transposon technology represent state-of-the-art laboratory techniques. Combination of these molecular tools allows rapid cloning of target genes into expression vectors. Here, we describe a novel Gateway technology-compatible transposon plasmid that combines the advantages of Gateway recombination cloning with the Sleeping Beauty (SB) transposon-mediated transgene integrations. In our system the transposition is catalyzed by the novel hyperactive SB100x transposase, and provides highly efficient and precise transgene integrations into the host genome. A Gateway-compatible transposon plasmid was generated in which the potential target gene can be fused with a yellow fluorescent protein (YFP) tag at the N-terminal. The vector utilizes the CAGGS promoter to control fusion protein expression. The transposon expression vector encoding the YFP-interferon-β protein (IFNB1) fusion protein together with the hyperactive SB100x transposase was used to generate stable cell lines in human embryonic kidney (HEK293) and rat adipose-derived stromal cells (ASC). ASCs and HEK293 cells stably expressed and secreted the human IFNB1 for up to 4 weeks after transfection. The generated Gateway-compatible transposon plasmid can be utilized for numerous experimental approaches, such as gene therapy or high-throughput screening methods in primary cells, representing a valuable molecular tool for laboratory applications.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号