首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cerebral hyperammonemia is a hallmark of hepatic encephalopathy, a debilitating condition arising secondary to liver disease. Pyruvate oxidation including tricarboxylic acid (TCA) cycle metabolism has been suggested to be inhibited by hyperammonemia at the pyruvate and -ketoglutarate dehydrogenase steps. Catabolism of the branched-chain amino acid isoleucine provides both acetyl-CoA and succinyl-CoA, thus by-passing both the pyruvate dehydrogenase and the -ketoglutarate dehydrogenase steps. Potentially, this will enable the TCA cycle to work in the face of ammonium-induced inhibition. In addition, this will provide the -ketoglutarate carbon skeleton for glutamate and glutamine synthesis by glutamate dehydrogenase and glutamine synthetase (astrocytes only), respectively, both reactions fixing ammonium. Cultured cerebellar neurons (primarily glutamatergic) or astrocytes were incubated in the presence of either [U-13C]glucose (2.5 mM) and isoleucine (1 mM) or [U-13C]isoleucine and glucose. Cell cultures were treated with an acute ammonium chloride load of 2 (astrocytes) or 5 mM (neurons and astrocytes) and incorporation of 13C-label into glutamate, aspartate, glutamine and alanine was determined employing mass spectrometry. Labeling from [U-13C]glucose in glutamate and aspartate increased as a result of ammonium-treatment in both neurons and astrocytes, suggesting that the TCA cycle was not inhibited. Labeling in alanine increased in neurons but not in astrocytes, indicating elevated glycolysis in neurons. For both neurons and astrocytes, labeling from [U-13C]isoleucine entered glutamate and aspartate albeit to a lower extent than from [U-13C]glucose. Labeling in glutamate and aspartate from [U-13C]isoleucine was decreased by ammonium treatment in neurons but not in astrocytes, the former probably reflecting increased metabolism of unlabeled glucose. In astrocytes, ammonia treatment resulted in glutamine production and release to the medium, partially supported by catabolism of [U-13C]isoleucine. In conclusion, i) neuronal and astrocytic TCA cycle metabolism was not inhibited by ammonium and ii) isoleucine may provide the carbon skeleton for synthesis of glutamate/glutamine in the detoxification of ammonium.  相似文献   

2.
Hyperammonemia has been suggested to induce enhanced cerebral cortex ammonia uptake, subsequent glutamine synthesis and accumulation, and finally net glutamine release into the blood stream, but this has never been confirmed in liver insufficiency models. Therefore, cerebral cortex ammonia- and glutamine-related metabolism was studied during liver insufficiency-induced hyperammonemia by measuring plasma flow and venous-arterial concentration differences of ammonia and amino acids across the cerebral cortex (enabling estimation of net metabolite exchange), 1 day after portacaval shunting and 2, 4, and 6 h after hepatic artery ligation (or in controls). The intra-organ effects were investigated by measuring cerebral cortex tissue ammonia and amino acids 6 h after liver ischemia induction or in controls. Arterial ammonia and glutamine increased in portacaval-shunted rats versus controls, and further increased during liver ischemia. Cerebral cortex net ammonia uptake, observed in portacaval-shunted rats, increased progressively during liver ischemia, but net glutamine release was only observed after 6 h of liver ischemia. Cerebral cortex tissue glutamine, gamma-aminobutyric acid, most other amino acids, and ammonia levels were increased during liver ischemia. Glutamate was equally decreased in portacaval-shunted and liver-ischemia rats. The observed net cerebral cortex ammonia uptake, cerebral cortex tissue ammonia and glutamine accumulation, and finally glutamine release into the blood suggest that the rat cerebral cortex initially contributes to net ammonia removal from the blood during liver insufficiency-induced hyperammonemia by augmenting tissue glutamine and ammonia pools, and later by net glutamine release into the blood. The changes in cerebral cortex glutamate and gamma-aminobutyric acid could be related to altered ammonia metabolism.  相似文献   

3.
Batch and continuous cultures were carried out to study the stoichiometry, kinetics, and regulation of glucose and amino acid metabolism of a recombinant BHK cell line, with particular attention to the metabolism at low levels of glucose and glutamine. The apparent yields of cells on glucose and glutamine, lactate on glucose, and ammonium on glutamine were all found to change significantly at low residual concentrations of glucose (<5 mmol/L) and glutamine (<1 mmol/L) . The uptake rates of glucose and glutamine were markedly reduced at low concentrations, leading to a more effective utilization of these nutrients for energy metabolism and biosynthesis and reduced formation rates of lactate and ammonium. However, the consumption of other amino acids, especially the essential amino acids leucine, isoleucine, and valine and the nonessential amino acids serine and glutamate, was strongly enhanced at low glutamine concentration. Quantitatively, it was shown that the cellular yields and rates associated with glucose metabolism were primarily determined by the residual glucose concentration, while those associated with glutamine metabolism depended mainly on the residual glutamine. Both experimental results and analysis of the kinetic data with models showed that the glucose metabolism of BHK cells is not affected by glutamine except for a slight influence under glucose limitation and glutaminolysis not by glucose, at least not significantly under the experimental conditions. Compared to hybridoma and other cultured animal cells, the recombinant BHK cell line showed remarkable differences in terms of nutrient sensitivity, stoichiometry, and amino acid metabolism at low levels of nutrients. These cell-line-specific stoichiometry and nutrient needs should be considered when designing an optimal medium and/or feeding strategy for achieving high cell density and high productivity of BHK cells. In this work, a cell density of 1.1 × 107 cells/mL was achieved in a conventional continuous culture by using a proper feed medium.  相似文献   

4.
Abstract: When astrocyte cultures are incubated with glutamate and ammonium, the clearance of these substrates followed by the formation and export of glutamine simulates the action of the "glutamine cycle" that is believed to function in the CNS. In the present study this process was found to increase the uptake of large neutral amino acids (LNAAs), namely, histidine, kynurenine, leucine, phenylalanine, and tryptophan, by two-to threefold in mouse cerebral astrocytes. The enhancement of kynurenine uptake was shown to depend on the formation of glutamine and to saturate at low levels of glutamine. LNAAs transiently lowered the glutamine content of astrocytes that were incubated with glutamate and ammonium, but they did not affect net export of glutamine to the solution at normal physiological pH. However, on adjustment of the pH of the solution to 7.8, which causes a large increase in glutamine content without affecting export, kynurenine now significantly increased net glutamine export. These findings relate to proposed mechanisms of cerebral dysfunction in hyperammonemia.  相似文献   

5.
An on-line high-pressure liquid chromatography (HPLC) system capable of measuring amino acids and carbohydrates was used to study metabolism in mammalian cell culture systems. The HPLC method utilized anion-exchange chromatography followed by integrated pulsed amperometric detection. The method is capable of measuring 19 amino acids plus glucose with a complete method time of 65 min. In actual cell cultures, the method was shown to be useful for monitoring 17 amino acids plus glucose. The two amino acids that were not accurately monitored were arginine and lysine, possibly due to their elution near the void volume of the column. The HPLC system was used to study variability in metabolism across different cell culture processes, as well as the effect of glucose and glutamine limitation on a single cell culture process. Chemometric analysis was used to draw statistically meaningful conclusions from the highly correlated, multivariate data set that resulted from these experiments. Using chemometrics, variation between processes was linked to differences in uptake rates of seven amino acids. Similarly, lactate concentration, cell density, and aspartate uptake rate were linked to glucose and glutamine limitation. The effect of nutrient limitation on glutamate, alanine, and ammonium was also considered.  相似文献   

6.
Interactins between skeletal muscle protein and amino acid metabolism were investigated using C57BL and 129ReJ mice with hereditary muscular dystrophy. On incubation, hind limb muscle preparations from dystrophic mice released large quantities of amino acids, particularly alanine and glutamine which were increased 70% and 40% compared to muscles from carrier or control mice. The increased alanine release did not result from altered alanine oxidation to CO2 or reincorporation into protein. Alanine and glutamine formation from added amino acids were equal with dystrophic and control muscles. Incorporation in vitro of leucine, alanine, and glutamate into proteins of dystrophic muscle was 3- to 7-fold greater than control muscle, and the incorporation in vivo of [3H]- or [14C]arginine into muscle proteins was greater in extent and earlier in time with dystrophic as compared to control muscle. Proteins were also labeled in vivo using [guanido-14C]arginine. On incubation of these muscles in vitro, a 100% greater loss of label from protein was observed with dystrophic as compared to control preparations, and the appearance of label in the media was correspondingly increased. Sodium dodecyl sulfate-gel electrophoresis of dystrophic skeletal muscle showed numerous protein bands to be reduced in density, but autoradiographic studies demonstrated that these same bands were more highly labeled in vitro by [35S]methionine in dystrophic than in control muscle. Although insulin stimulation of glucose uptake was markedly blunted in dystrophic muscle, insulin inhibited alanine and glutamine release equally from both control and dystrophic muscle. These data indicate that alanine and glutamine formation and release are increased in hereditary mouse muscular dystrophy. An accelerated degradation and an increased resynthesis of many muscle proteins were also observed in dystrophic compared to control animals. This increased proteolysis may account for the increased alanine and glutamine formation in dystrophic muscle.  相似文献   

7.
The regulation of the energy metabolism in contracting skeletal muscle is under close control, and several regulating factors have been reported. The aim of this study was to investigate the importance of the oxygen supply as a limiting factor for muscle performance during contractions and recovery from contractions. To perform well-controlled standardized experiments on contracting skeletal muscle, the perfused rat hind limb model was developed. The 31P NMR technique was adapted to the rat hind limb model. This enabled continuous nondestructive monitoring of the energy state at various levels of muscular activity. Significant correlations were found between oxygen delivery and oxygen consumption, lactate release, and glucose uptake, respectively. An increased degree of fatigue was observed at lower oxygen deliveries. In both soleus and gastrocnemius muscles, oxygen delivery correlated with the intramuscular concentrations of phosphocreatine (PCr), lactate, and glycogen. The 31P NMR experiments showed a correlation between oxygen delivery and the steady-state level of PCr/inorganic phosphate (Pi) during the contraction period. The rate of recovery in PCr/Pi after the contraction was also dependent on oxygen delivery. The results demonstrate a causal relationship between oxygen supply and energy state in contracting as well as recovering skeletal muscles.  相似文献   

8.
Ammonia reduction is the target for therapy of hepatic encephalopathy, but lack of quantitative data about how the individual organs handle ammonia limits our ability to develop novel therapeutic strategies. The study aims were to evaluate interorgan ammonia metabolism quantitatively in a devascularized pig model of acute liver failure (ALF). Ammonia and amino acid fluxes were measured across the portal drained viscera (PDV), kidneys, hind leg, and lungs in ALF pigs. ALF pigs developed hyperammonemia and increased glutamine levels, whereas glutamate levels were decreased. PDV contributed to the hyperammonemic state mainly through increased shunting and not as a result of increased glutamine breakdown. The kidneys were quantitatively as important as PDV in systemic ammonia release, whereas muscle took up ammonia. Data suggest that the lungs are able to remove ammonia from the circulation during the initial stage of ALF. Our study provides new data supporting the concept of glutamate deficiency in a pig model of ALF. Furthermore, the kidneys are quantitatively as important as PDV in ammonia production, and the muscles play an important role in ammonia removal.  相似文献   

9.
Substrate limited fed batch cultures were used to study growth and overflow metabolism in hybridoma cells. A glucose limited fed batch, a glutamine limited fed batch, and a combined glucose and glutamine limited red batch culture were compared with batch cultures. In all cultures mu reaches its maximum early during growth and decreases thereafter so that no exponential growth and decreases thereafter so that no exponential growth rate limiting, although the glutamine concentration (>0.085mM) was lower than reported K(s) vales and glucose was below 0.9mM; but some other nutrients (s) was the cause as verified by simulations. Slightly more cells and antibodies were produced in the combined fed batch compared with the batch culture. The specific rates for consumption of glucose and glutamine were dramatically influenced in fed batch cultures resulting in major metabolic changes. Glucose limitation decreased lactate formation, but increased glutamine consumption and ammonium formation. Glutamine limitation decreased ammonium and alanine formation of lactate, alanine, and ammonium was negligible in the dual-substrate limited fed batch culture. The efficiency of the energy metabolism increased, as judged by the increase in the cellular yield coefficient for glucose by 100% and for glutamine by 150% and by the change in the metabolic ratios lac/glc, ala/ln, and NH(x)/ln, in the combined fed culture. The data indicate that a larger proportion of consumed glutamine enters the TCA cycle through the glutamate dehydrogenase pathway, which releases more energy from glutamine than the transamination pathway. We suggest that the main reasons for these changes are decreased uptake rates of glucose and glutamine, which in turn lead to a reduction of the pyruvate pool and a restriction of the flux through glutaminase and lactate dehydrogenase. There appears to be potential for further cell growth in the dual-substrate-limited fed batch culture as judged by a comparison of mu in the different cultures. (c) 1994 John Wiley & Sons, Inc.  相似文献   

10.
Insect cell metabolism was studied in substrate-limited fed batch cultures of Spodoptera frugiperda (Sf-9) cells. Results from a glucose-limited culture, a glutamine-limited culture, a culture limited in both glucose and glutamine and a batch culture were compared. A stringent relation between glucose excess and alanine formation was found. In contrast, glucose limitation induced ammonium formation, while, at the same time, alanine formation was completely suppressed. Simultaneous glucose and glutamine limitation suppressed both alanine and ammonium formation. Although the metabolism was influenced by substrate limitation, the specific growth rate was similar in all cultures. Alanine formation must involve incorporation of free ammonium, if ammonium formation is mediated by glutaminase and glutamate dehydrogenase, as our data suggest. On the basis of the results, two possible pathways for the formation of alanine in the intermediary metabolism in insect cells are suggested. The cellular yield on glucose was increased 6.6 times during glucose limitation, independently of the cellular yield on glutamine, which was increased 50–100 times during glutamine limitation. The results indicate that alanine overflow metabolism is energetically wasteful and that glutamine is a dispensable amino acid for cultured Sf-9 cells. Preliminary data confirm that glutamine can be synthesised by the cells themselves in amounts sufficient to support growth.  相似文献   

11.
This is the first study to examine PER.C6 cell glucose/energy and glutamine metabolism with fed-batch cultures at controlled low glutamine, low glucose, and simultaneous low glucose and low glutamine levels. PER.C6(TM) cell metabolism was investigated in serum-free suspension bioreactors at two-liter scale. Control of glucose and/or glutamine concentrations had a significant effect on cellular metabolism leading to an increased efficiency of nutrient utilization, altered byproduct synthesis, while having no effect on cell growth rate. Cultivating cells at a controlled glutamine concentration of 0.25 mM reduced q(Gln) and q(NH(4)(+)) by approximately 30%, q(Ala) 85%, and q(NEAA) 50%. The fed-batch control of glutamine also reduced the overall accumulation of ammonium ion by approximately 50% by minimizing the spontaneous chemical degradation of glutamine. No major impact upon glucose/energy metabolism was observed. Cultivating cells at a glucose concentration of 0.5 mM reduced q(Glc) about 50% and eliminated lactate accumulation. Cells exhibited a fully oxidative metabolism with Y(O(2)/Glc) of approximately 6 mol/mol. However, despite no increase in q(Gln), an increased ammonium ion accumulation and Y(NH(4)(+)/Gln) were also observed. Effective control of lactate and ammonium ion accumulation by PER.C6 cells was achieved using fed-batch with simultaneously controlled glucose and glutamine. A fully oxidative glucose metabolism and a complete elimination of lactate production were obtained. The q(Gln) value was again reduced and, despite an increased q(NH(4)(+)) compared with batch culture, ammonium ion levels were typically lower than corresponding ones in batch cultures, and the accumulation of non-essential amino acids (NEAA) was reduced about 50%. In conclusion, this study shows that PER.C6 cell metabolism can be confined to a state with improved efficiencies of nutrient utilization by cultivating cells in fed-batch at millimolar controlled levels of glucose and glutamine. In addition, PER.C6 cells fall into a minority category of mammalian cell lines for which glutamine plays a minor role in energy metabolism.  相似文献   

12.
Substantial extrasplanchnic metabolism of estrogens is known to occur in humans and dogs. As part of an investigation into the anatomic sites of such metabolism, the extraction of estrogens by the hind limb of the dog was studied during a constant infusion of [3H]estrone. Simultaneous femoral artery (A) and femoral vein (FV) plasma samples were obtained and analyzed for total radioactivity, unconjugated and conjugated radioactivity, for [3H]estrone and for its metabolites estradiol-17β, estrone sulfate and estrone glucosiduronate. The percent extraction across the hind limb was calculated [100(1-FV/A)]. The mean percent extraction ± SE of total, conjugated and unconjugated radioactivity was 31 ± 3.9, 27 ± 4.4 and 16 ± 3.7 respectively, indicating significant net uptake of these moieties by the hind limb (P<.01). Mean percent extractions ± SE for estrone and estradiol-17β were 40 ± 4.9 and 32 ± 2.7, indicating significant net uptake of these specific unconjugated estrogens by the hind limb (P<.01). The mean percent extraction of estrone glucosiduronate was 16 ± 3.1 indicating significant net uptake of this conjugate (P<.01). However, the mean percent extraction of estrone sulfate was negative (?12 ± 4.1) indicating net production of this conjugate by the hind limb (P<.01). Since the net uptake of total radioactivity cannot be explained on the basis of metabolism by the hind limb, the lymphatics were investigated as an alternate efferent pathway. In similar experiments the thoracic duct was cannulated, the estrogens in lymph were analyzed and compared with those in femoral artery plasma. Each estrogen measured in plasma appeared in lymph within 10 minutes following the start of the [3H]estrone infusion. The lymph/femoral artery concentration ratios reached a plateau at 70–100 minutes after the start of the infusion. The plateau concentrations were 20–70% of those in plasma. It is suggested that removal of estrogens in the lymph may account, in part at least, for the net uptake of total radioactivity across the hind limb calculated from the plasma data.  相似文献   

13.
Glutamine has been shown to influence endothelial-dependent relaxation and nitric oxide production in vitro, possibly by limiting arginine availability, but its effects in vivo have not been well studied. Hyperammonemia is a pathophysiological condition in which glutamine is elevated and contributes to depressed CO(2) reactivity of cerebral arterioles. We tested the hypothesis that acute hyperammonemia decreases pial arteriolar dilation to acetylcholine in vivo and that this decrease could be prevented by inhibiting glutamine synthetase with L-methionine-S-sulfoximine (MSO) or by intravenous infusion of L-arginine. Pial arteriolar diameter responses to topical superfusion of acetylcholine were measured in anesthetized rats before and at 6 h of infusion of either sodium or ammonium acetate. Ammonium acetate infusion increased plasma ammonia concentration from approximately 30 to approximately 600 microM and increased cerebral glutamine concentration fourfold. Arteriolar dilation to acetylcholine was intact after infusion of sodium acetate in groups pretreated with vehicle or with MSO plus methionine, which was coadministered to prevent MSO-induced seizures. In contrast, dilation in response to acetylcholine was completely blocked in hyperammonemic groups pretreated with vehicle or methionine alone. However, MSO plus methionine administration before hyperammonemia, which maintained cerebral glutamine concentration at control values, preserved acetylcholine dilation. Intravenous infusion of L-arginine during the last 2 h of the ammonium acetate infusion partially restored dilation to acetylcholine without reducing cerebral glutamine accumulation. Superfusion of 1 or 2 mM L-glutamine through the cranial window for 1 h in the absence of hyperammonemia attenuated acetylcholine dilation but had no effect on endothelial-independent dilation to nitroprusside. We conclude that 1) hyperammonemia reduces acetylcholine-evoked dilation in cerebral arterioles, 2) this reduction depends on increased glutamine rather than ammonium ions, and 3) increasing arginine partially overcomes the inhibitory effect of glutamine.  相似文献   

14.
In mature (450-600 g) 21 degrees C-acclimated male rats, anaesthetized with urethane, blood flow (measured by the radioactive microsphere technique) to brown adipose tissue (BAT) was determined during the infusion of the beta-adrenoceptor agonist BRL 28410 or noradrenaline bitartrate at doses chosen to give similar increases in whole body oxygen uptake. Blood flow to BAT during BRL 28410 infusion was only about one third of that found during noradrenaline infusion although increases in whole body thermogenesis were similar (55 and 77% for BRL 28410 and noradrenaline, respectively). This suggests that BAT may be less involved in the thermogenic response to BRL 28410 than to noradrenaline. In a separate experiment using slightly smaller rats (350-500 g) hind limb oxygen uptake was measured in situ using a venous bypass preparation. BRL 28410, at a dose having a maximum effect on whole body thermogenesis (53% increase), had no effect on oxygen delivery to the hind limb but significantly increased oxygen extraction by 33% (p less than 0.001). In contrast, noradrenaline, also at a dose that maximally increased whole body thermogenesis, led to a 35% decrease in oxygen delivery to the hind limb and no change in oxygen extraction. For the thermogenic beta-agonist BRL 28410 the hind limb, and presumably muscular tissue in general, may be contributing to thermogenesis.  相似文献   

15.
The purpose of this study was to simultaneously isolate skeletal muscle plasma and microsomal membranes from the hind limbs of male Sprague-Dawley rats perfused either in the absence or presence of 20 milliunits/ml insulin and to determine the effect of insulin on the number and distribution of glucose transporters in these membrane fractions. Insulin increased hind limb glucose uptake greater than 3-fold (2.4 +/- 0.7 versus 9.2 +/- 1.0 mumol/g x h, p less than 0.001). Plasma membrane glucose transporter number, measured by cytochalasin B binding, increased 2-fold (9.1 +/- 1.0 to 20.4 +/- 3.1 pmol/mg protein, p less than 0.005) in insulin-stimulated muscle while microsomal membrane transporters decreased significantly (14.8 +/- 1.6 to 9.8 +/- 1.4 pmol/mg protein, p less than 0.05). No change in the dissociation constant (Kd approximately 120 nm) was observed. K+-stimulated-p-nitrophenol phosphatase, 5'-nucleotidase, and galactosyltransferase specific activity, enrichment, and recovery in the plasma and microsomal membrane fractions were not altered by insulin treatment. Western blot analysis using the monoclonal antibody mAb 1F8 (specific for the insulin-regulatable glucose transporter) demonstrated increased glucose transporter densities in plasma membranes from insulin-treated hind limb skeletal muscle compared with untreated tissues, while microsomal membranes from the insulin-treated hind limb skeletal muscle had a concomitant decrease in transporter density. We conclude that the increase in plasma membrane glucose transporters explains, at least in part, the increase in glucose uptake associated with insulin stimulation of hind limb skeletal muscle. Our data further suggest that these recruited transporters originate from an intracellular microsomal pool, consistent with the translocation hypothesis.  相似文献   

16.
Abstract: A shift in pH from 7.4 to 7.8 in the incubation solution caused a 3.4-fold increase in the free glutamine content of mouse cerebral astrocytes that were incubated with glutamate (100 μ M ) and ammonium (100 μ M ). This large and reversible steady-state increase in glutamine content was accompanied by smaller transient increases in the following: (a) net formation of glutamine; (b) clearance of glutamate from the incubation solution; and (c) glutamate content. The content of glutamine was reduced markedly by omission of either glutamate or ammonium from the incubation solution, or by inhibition of glutamine synthetase activity with methionine sulfoximine. The rate at which glutamine was exported from the astrocytes was unaffected by the pH change. The effects of pH on the concentration of free ammonia or on glutamate uptake do not appear to mediate the increase in glutamine content. Uptake of exogenous glutamine was little affected by the pH change. Therefore, possible mediation of the effect by an increase in intracellular pH must be considered. The response to altered pH described here may provide a cellular basis for the increased level of brain glutamine observed in hyperammonemia.  相似文献   

17.
Sustained hyperammonemia resulting from portocaval anastomosis (PCA) in the rat, is accompanied by neurological symptoms and reversible morphological changes in brain, the nature and distribution of which suggest selective vulnerability of certain brain structures. the present study was initiated to investigate the effects of increasing CNS ammonia on the distribution of amino acids in regions of the rat brain in relation to the degree of neurological impairment in PCA rats. Four weeks following PCA, rats were administered ammonium acetate (5.2 mmol/kg, i.p.) to precipitate neurological symptoms of encephalopathy which included diminished locomotor activity, loss of hindlimb extension and righting reflexes and ultimately coma. At various stages during the development of encephalopathy, rats were sacrificed and the amino acids glutamine, glutamate and aspartate measured simultaneously, using a sensitive double-isotope dansyl microassay. Homogenates of the following regions of the CNS were assayed: cerebral cortex, hippocampus, striatum, midbrain, hypothalamus, cerebellum, medulla-pons, spinal cord (gray matter) and spinal cord (white matter). Sustained hyperammonemia associated with PCA alone resulted in a non-uniform 2–4 fold increase of glutamine in all regions of the CNS. Glutamate, on the other hand, was selectively increased in striatum and cerebellum, two regions of brain shown to exhibit early morphologically-characterised astrocytic abnormalities in rats with PCA. Onset of severe neurological dysfunction was accompanied by significantly decreased glutamine and glutamate in striatum and cerebellum. Thus, sustained hyperammonemia in association with portocaval shunting results in region-selective effects with respect to glutamine-glutamate metabolism in the CNS.  相似文献   

18.
In the post-absorptive state, ammonia is produced in equal amounts in the small and large bowel. Small intestinal synthesis of ammonia is related to amino acid breakdown, whereas large bowel ammonia production is caused by bacterial breakdown of amino acids and urea. The contribution of the gut to the hyperammonemic state observed during liver failure is mainly due to portacaval shunting and not the result of changes in the metabolism of ammonia in the gut. Patients with liver disease have reduced urea synthesis capacity and reduced peri-venous glutamine synthesis capacity, resulting in reduced capacity to detoxify ammonia in the liver.The kidneys produce ammonia but adapt to liver failure in experimental portacaval shunting by reducing ammonia release into the systemic circulation. The kidneys have the ability to switch from net ammonia production to net ammonia excretion, which is beneficial for the hyperammonemic patient. Data in experimental animals suggest that the kidneys could have a major role in post-feeding and post-haemorrhagic hyperammonemia.During hyperammonemia, muscle takes up ammonia and plays a major role in (temporarily) detoxifying ammonia to glutamine. Net uptake of ammonia by the brain occurs in patients and experimental animals with acute and chronic liver failure. Concomitant release of glutamine has been demonstrated in experimental animals, together with large increases of the cerebral cortex ammonia and glutamine concentrations. In this review we will discuss interorgan trafficking of ammonia during acute and chronic liver failure. Interorgan glutamine metabolism is also briefly discussed, since glutamine synthesis from glutamate and ammonia is an important alternative pathway of ammonia detoxification. The main ammonia producing organs are the intestines and the kidneys, whereas the major ammonia consuming organs are the liver and the muscle.  相似文献   

19.
Sparse-fur (spf) mutant mice with X-linked ornithine transcarbamylase (OTC) deficiency were examined for hyperammonemia and its effect on energy metabolism. We compared the levels of ammonia, glutamine, glutamate and some of the intermediates of energy metabolism in the brain and liver of spf mice with those of control mice. In spf mice we observed significant increases in ammonia, glutamine, alpha-ketoglutarate and glucose with a significant decrease in ATP, glutamate and pyruvate in both brain and liver. The redox states of the brain and liver were also altered in spf mice. The results suggest that many of the metabolic alterations seen in spf mice could be due to the elevated ammonia levels. The spf mouse may, therefore, be an ideal model for the study of the neurotoxic effects of ammonia in chronic hyperammonemic syndromes.  相似文献   

20.
Serum carbohydrate metabolism was analysed in control, control stimulated, denervation atrophied and denervation stimulated dogs, Canis domesticus. The muscular training has resulted in the hypoglycemia through the mobilization of glucose into both hexose mono- and diphosphate pathways. The denervation atrophy, on the contrary, resulted in hyperglycemia because of exactly opposite changes in the carbohydrate metabolism in the serum and also possibly due to the lack of uptake by the muscle. The training programme of electrical stimulation applied to this denervated muscle has wiped off the hyperglycemia. The importance of muscular work in modulating the serum carbohydrate metabolism was indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号