首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Modification of DNA bases in mammalian chromatin upon treatment with hydrogen peroxide in the presence of ferric and cupric ions was studied. Ten DNA base products in mammalian chromatin were identified and quantitated by the use of gas chromatography-mass spectrometry with selected-ion monitoring after hydrolysis of chromatin and trimethylsilylation of hydrolysates. This technique permitted the analysis of modified DNA bases in chromatin without the necessity of isolation of DNA from chromatin first. Modified bases identified were typical hydroxyl radical-induced products of DNA, indicating the involvement of hydroxyl radical in their formation. This was also confirmed by inhibition of product formation by typical scavengers of hydroxyl radical. The inhibition of product formation was much more prominent in the presence of chelated ions than unchelated ions, indicating a possible site-specific formation of hydroxyl radical when metal ions are bound to chromatin. Hydrogen peroxide in the presence of cupric ions caused more DNA damage than in the presence of ferric ions. Chelation of cupric ions caused a marked inhibition in product formation. By contrast, DNA was damaged more extensively in the presence of chelated ferric ions than in the presence of unchelated ferric ions. The presence of ascorbic acid generally increased the yields of the products, indicating increased production of hydroxyl radical by reduction of metal ions by ascorbic acid. Superoxide dismutase afforded partial inhibition of product formation only in the case of chelated iron ions. The yields of the modified bases in chromatin were lower than those observed with calf thymus DNA under the same conditions.  相似文献   

2.
Dynamic viscosity (eta) of the high-molecular-weight hyaluronan (HA) solution was measured by a Brookfield rotational viscometer equipped with a Teflon cup and spindle of coaxial cylindrical geometry. The decrease of eta of the HA solution, indicating degradation of the biopolymer, was induced by a system containing H2O2 alone or H2O2 plus CuCl2. The reaction system H2O2 plus CuCl2 as investigated by EPR spin-trapping technique revealed the formation of a four-line EPR signal characteristic of a *DMPO-OH spin adduct. Thus, hydroxyl radicals are implicated in degradation of high-molecular-weight HA by the system containing H2O2 and CuCl2.  相似文献   

3.
Rat and pigeon heart mitochondria supplemented with antimycin produce 0.3–1.0nmol of H2O2/min per mg of protein. These rates are stimulated up to 13-fold by addition of protophores (carbonyl cyanide p-trifluoromethoxyphenylhydrazone, carbonyl cyanide m-chloromethoxyphenylhydrazone and pentachlorophenol). Ionophores, such as valinomycin and gramicidin, and Ca2+ also markedly stimulated H2O2 production by rat heart mitochondria. The enhancement of H2O2 generation in antimycin-supplemented mitochondria and the increased O2 uptake of the State 4-to-State 3 transition showed similar protophore, ionophore and Ca2+ concentration dependencies. Thenoyltrifluoroacetone and N-bromosuccinimide, which inhibit succinate–ubiquinone reductase activity, also decreased mitochondrial H2O2 production. Addition of cyanide to antimycin-supplemented beef heart submitochondrial particles inhibited the generation of O2, the precursor of mitochondrial H2O2. This effect was parallel to the increase in cytochrome c reduction and it is interpreted as indicating the necessity of cytochrome c13+ to oxidize ubiquinol to ubisemiquinone, whose autoxidation yields O2. The effect of protophores, ionophores and Ca2+ is analysed in relation to the propositions of a cyclic mechanism for the interaction of ubiquinone with succinate dehydrogenase and cytochromes b and c1 [Wikstrom & Berden (1972) Biochim. Biophys. Acta 283, 403–420; Mitchell (1976) J. Theor. Biol. 62, 337–367]. A collapse in membrane potential, increasing the rate of ubisemiquinone formation and O2 production, is proposed as the molecular mechanism for the enhancement of H2O2 formation rates observed on addition of protophores, ionophores and Ca2+.  相似文献   

4.
5.
6.
Oxidative deamination by hydrogen peroxide in the presence of metals   总被引:1,自引:0,他引:1  
Various amines, including lysine residue of bovine serum albumin, were oxidatively deaminated to form the corresponding aldehydes by a H 2 O 2 /Cu 2+ oxidation system at physiological pH and temperature. The resulting aldehydes were measured by high-performance liquid chromatography. We investigated the effects of metal ions, pH, inhibitors, and O 2 on the oxidative deamination of benzylamine by H 2 O 2 . The formation of benzaldehyde was the greatest with Cu 2+ , and catalysis occurred with Co 2+ , VO 2+ , and Fe 3+ . The reaction was greatly accelerated as the pH value rose and was markedly inhibited by EDTA and catalase. Dimethyl sulfoxide and thiourea, which are hydroxyl radical scavengers, were also effective in inhibiting the generation of benzaldehyde, indicating that the reaction is a hydroxyl radical-mediated reaction. Superoxide dismutase greatly stimulated the reaction, probably due to the formation of hydroxyl radicals. O 2 was not required in the oxidation, and instead slightly inhibited the reaction. We also examined several oxidation systems. Ascorbic acid/O 2 /Cu 2+ and hemoglobin/H 2 O 2 systems also converted benzylamine to benzaldehyde. The proposed mechanism of the oxidative deamination by H 2 O 2 /Cu 2+ system is discussed.  相似文献   

7.
Blue light irradiation of 2-deoxyribose (DOR) in the presence of uroporphyrin I (UP), ascorbate (AH-), trace iron, and phosphate buffer resulted in a strong stimulation of hydroxyl radical (OH.)-dependent oxidation of DOR. Photostimulated generation of H2O2 was monitored after removal of residual AH- (i) by ascorbate oxidase treatment, or (ii) by anion exchange on mini-columns of DEAE-Sephadex. Irradiation of the above mixture produced a strong burst of H2O2 which was intensified by desferrioxamine and suppressed by catalase or EDTA. The mechanism suggested by these observations is one in which photoreduction of UP to the radical anion initiates the formation of H2O2, which gives rise to OH. via Fenton chemistry. This is the first known investigation of H2O2 fluxes in a Type I (free radical) photoreaction involving AH- as the electron donor.  相似文献   

8.
It is shown that nitrogen dioxide oxidizes thiamine to thiamine disulfide, thiochrome, and oxodihydrothiochrome (ODTch). The latter is formed during oxidation of thiochrome by nitrogen dioxide. Nitrogen dioxide was produced by incubation of nitrite with horse ferric myoglobin and human hemoglobin in the presence of hydrogen peroxide. After addition of tyrosine or phenol to aqueous solutions containing oxoferryl forms of the hemoproteins, thiamine, and nitrite, the yield of thiochrome greatly increased, whereas the yield of ODTch decreased. In the presence of high concentrations of tyrosine or phenol compounds ODTch was not formed at all. The neutral form of thiamine with the closed thiazole cycle and minor tricyclic form of thiamine do not enter the heme pocket of the protein and do not interact with the oxoferryl heme complex Fe(IV=O) or porphyrin radical. The tricyclic form of thiamine is oxidized to thiochrome by tyrosyl radicals located on the surface of the hemoprotein. The thiol form of thiamine is oxidized to thiamine disulfide by both hemoprotein tyrosyl radicals and oxoferryl heme complexes. Nitrite and also tyrosine, tyramine, and phenol readily penetrate into the heme pocket of the protein and reduce the oxyferryl complex to ferric cation. These reactions yield nitrogen dioxide as well as tyrosyl and phenoxyl radicals of tyrosine molecules and phenol compounds, respectively. Tyrosyl and phenoxyl radicals of low molecular weight compounds oxidize thiamine only to thiochrome and thiamine disulfide. The effect of oxoferryl forms of myoglobin and hemoglobin, nitrogen dioxide, and phenol on thiamine oxidative transformation as well as antioxidant properties of the hydrophobic thiamine metabolites thiochrome and ODTch are discussed.  相似文献   

9.
Incubation of a number of ferric ion chelates with H2O2 at pH 7.4 generated a reactive species able to produce chemical modifications of the bases in DNA that are very similar to those produced in DNA by the hypoxanthine/xanthine oxidase system (Aruoma, O.I., Halliwell, B., and Dizdaroglu, M. (1989) J. Biol. Chem. 264, 13024-13028). Products were identified and quantitated by the use of gas chromatography-mass spectrometry with selected-ion monitoring. Compared with other complexes used, ferric ion-nitrilotriacetic acid produced by far the largest amount of the base products. Typical hydroxyl radical scavengers and superoxide dismutase provided significant decreases in the yields of the products. On this basis, it is proposed that ferric ion complexes react with H2O2 to produce hydroxyl radical; this was also shown using the deoxyribose assay. Inhibition of product formation by superoxide dismutase suggests the involvement of superoxide radical in this reaction. It is likely that hydroxyl radical generated by reaction of the ferric ion-nitrilotriacetic acid complex with H2O2 contributes to the carcinogenicity and nephrotoxicity associated with this chelating agent.  相似文献   

10.
11.
12.
13.
The effects of cigarette smoke extract on radical formation were examined in reaction mixtures containing 13-hydroperoxide octadecadienoic acid (13-HPODE), FeCl3, cigarette smoke extract, ethylenediaminetetraacetic acid (EDTA), alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN), and phosphate buffer (pH 7.4). Cigarette smoke extract enhanced the formation of both 7-carboxyheptyl and pentyl radicals in the reaction. Ferric ions were reduced in the reaction mixture, suggesting that cigarette smoke extract enhances the formation of 7-carboxyheptyl and pentyl radicals by reducing ferric irons. Although there is a large body of evidence supporting the involvement of radicals such as the semiquinone radical, hydroxyl radical, superoxide radical, nitric oxide radicals in smoking-related diseases, the enhancement by cigarette smoke of lipid-derived radical formation, which we first report here, may be one of the other causes of smoking-related diseases.  相似文献   

14.
The lysosomotropic amines methylamine (40 mM) and chloroquine (125 mM) prevented the killing of cultured hepatocytes by hydrogen peroxide generated in the medium by glucose oxidase. Maximum protection required several hours preincubation with either amine. Sensitivity of the hepatocytes to H2O2 was restored either by the addition of ferrous or ferric iron to the culture medium, or by incubating the cells for 4 hours in the absence of either amine prior to treatment with H2O2. Neither methylamine nor chloroquine had any effect on the cell killing by t-butyl hydroperoxide, a hepatotoxin that does not require iron. The protective effect of the lysosomotropic amines was distinguished from that of the ferric iron chelator deferoxamine in two ways: 1) deferoxamine protected hepatocytes from H2O2 toxicity but did not require a pretreatment period; and 2) in contrast to methylamine or chloroquine, deferoxamine had no effect on lysosomal pH as assessed by the fluorescent probe acridine orange. The data suggest that a lysosomal pool is the source of the ferric iron necessary for the killing of hepatocytes by H2O2.  相似文献   

15.
The oxidation of catechol in neutral and slightly alkaline aqueous solutions (pH 7-9.6) by excess hydrogen peroxide (0.002-0.09 mol/L) in the presence of Co(II) (2.10(-7)-2.10(-5) mol/L) is accompanied by abrupt formation of red purple colouration, which is subsequently decolourized within 1 h. The electron spectra of the reaction mixture are characterized by a broad band covering the whole visible range (400-700 nm), with maximum at 485 nm. The reaction is initiated by catechol oxidation to its semiquinone radical and further to 1,2-benzoquinone. By nucleophilic addition of hydrogen peroxide into the p-position of benzoquinone C=O groups, hydroperoxide intermediates are formed, which decompose to hydroxylated 1,4-benzoquinones. It was confirmed by MS spectroscopy that monohydroxy-, dihydroxy- and tetrahydroxy-1,4-benzoquinone are formed as intermediate products. As final products of catechol decomposition, muconic acid, its hydroxy- and dihydroxy-derivatives and crotonic acid were identified. In the micellar environment of hexadecyltrimethylammonium bromide the decomposition rate of catechol is three times faster, due to micellar catalysis, and is accompanied by chemiluminescence (CL) emission, with maxima at 500 and 640 nm and a quantum yield of 1 x 10(-4). The CL of catechol can be further sensitized by a factor of 8 (maximum) with the aid of intramicellar energy transfer to fluorescein.  相似文献   

16.
17.
We report on the elucidation of DNA-protein cross-links formed in isolated mammalian chromatin upon treatment with H2O2 in the presence of iron or copper ions. Analysis of chromatin samples by gas chromatography/mass spectrometry after hydrolysis and derivatization showed the presence of 3-[(1,3-dihydro-2,4-dioxopyrimidin-5-yl)methyl]-L-tyrosine (thymine-tyrosine cross-link) on the basis of the gas chromatographic and mass spectrometric characteristics of the trimethylsilylated authentic compound. Other DNA-protein cross-links involving thymine and the aliphatic amino acids and cytosine and tyrosine, which were known to occur in nucleohistone gamma-irradiated under anoxic conditions, were not observed. This was due to inhibition by oxygen as clearly shown by experiments that were carried out using ionizing radiation under both oxic and anoxic conditions instead of using H2O2 and metal ions. However, oxygen did not inhibit formation of the thymine-tyrosine cross-link in gamma-irradiated chromatin or in chromatin treated with H2O2 and metal ions. The yield of the thymine-tyrosine cross-link was higher upon treatment with H2O2/chelated Fe3+ ions than with H2O2/unchelated Fe3+ ions. By contrast, H2O2/unchelated Cu2+ ions produced a higher yield than H2O2/chelated Cu2+ ions. Almost complete inhibition of cross-link formation was provided by the hydroxyl radical scavengers mannitol and dimethyl sulfoxide when H2O2/chelated metal ions were used. On the other hand, scavengers only partially inhibited formation of cross-links when H2O2/unchelated metal ions were used, possibly indicating the site-specific nature of cross-linking. Superoxide dismutase afforded partial inhibition only when chelated ions were used.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The aim of this work was to study the dityrosine-forming activity of lactoperoxidase (LPO) and its potential application for measuring hydrogen peroxide (H2O2). It was observed that LPO was able to form dityrosine at low H2O2 concentrations. Since dityrosine concentration could be measured in a simple fluorimetric reaction, this activity of the enzyme was utilized for the measurement of H2O2 production in different systems. These experiments successfully measured the activity of NADPH oxidase 4 (Nox4) by this method. It was concluded that LPO-mediated dityrosine formation offers a simple way for H2O2 measurement.  相似文献   

19.
We found that a sub-lethal concentration of hydrogen peroxide (HPOx) enhanced the growth of Helicobacter pylori in Brucella broth supplemented with 10% fetal bovine serum (BB/FBS). The enhancement was evident at 0.1 mM HPOx and reached a maximun at 3.5 mM. The growth stimulation was dependent on the basal media used; when brain heart infusion broth (BHIB) was used instead of BB, the growth was not altered regardless of the presence or absence of HPOx. Furthermore, the growth in BHIB/FBS was comparable to that in BB/FBS plus 3.5 mM HPOx. This suggested that the enhancement of growth by HPOx resulted from the derepression of the inhibitory factor existing in BB by HPOx. The inhibitory substance seemed to be bisulfite salt since the bacteria grew to a similar extent in bisulfite-less Brucella broth (BLBB0)/FBS compared to the bacterial growth in BHIB/FBS and BB/FBS plus HPOx. These results indicate that the detoxification of bisulfite in BB can be easily achieved by simply adding HPOx to the medium, which causes the oxidation of bisulfite to bisulfate, a less-toxic compound to the bacterial growth. Since we also found that the morphology and cellular protein profile of BB/FBS-cultured bacteria were apparently different from those cultured in BLBB/FBS, we propose that the use of BB for primary isolation and cultivation of H. pylori should be limited on certain occasions, or if necessary, BB can be used after detoxification of the bisulfite by the addition of a low concentration of HPOx.  相似文献   

20.
A hypothesis that lipoxygenase may mediate N-dealkylation of xenobiotics was investigated using the prototype drug aminopyrine and soybean lipoxygenase as a model enzyme in the presence of hydrogen peroxide. Formaldehyde production as a result of N-demethylation of aminopyrine exhibited pH optimum of 6.5. The reaction was dependent on the incubation time, amount of enzyme, and concentration of aminopyrine and hydrogen peroxide. Under the experimental conditions employed, the specific activity for N-demethylation of aminopyrine was found to be 823 ± 93 nmoles per min/mg protein or 89 ± 10 nmoles per min/nmole of enzyme. The reaction was significantly inhibited by nordihydroguaiaretic acid and gossypol, the classical inhibitors of lipoxygenase. Spectrophotometric analyses indicated the generation of a nitrogen-centered free-radical cation as the initial oxidation product of aminopyrine. The rate of accumulation of this radical species was also dependent on pH, the amount of enzyme, and concentration of aminopyrine and hydrogen peroxide. The radical production was markedly suppressed by ascorbate, glutathione, and dithiothreitol in a concentration-dependent manner. Preliminary data gathered for the oxidation of other chemicals indicated that the lipoxygenase exhibits a unique substrate specificity. Collectively, the evidence presented suggests for the first time that lipoxygenase pathway may be involved in N-demethylation of aminopyrine and other chemicals. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 175–183, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号