首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E C Lee  S Y Yu  X Hu  M Mlodzik  N E Baker 《Genetics》1998,150(2):663-673
The scabrous (sca) gene encodes a secreted dimeric glycoprotein with putative coiled-coil domains N-terminally and a C-terminal region related to the blood clot protein fibrinogen. Homozygous sca mutants have extra bristle organs and rough eyes. We describe a GAL4-based expression system for testing rescue of the sca mutant phenotype by altered SCA proteins and for misexpression. We find that deletion of the fibrinogen-related domain (FReD) greatly decreases SCA function, confirming the importance of this conserved region. SCA function could not be restored by FReDs from human fibrinogen chain genes. However, proteins lacking any FReD still showed some function in both rescue and misexpression experiments, suggesting that putative effector-binding regions lie outside this domain. Consistent with this, proteins expressing only the FReD had no rescuing activity but were recessive negative; i.e., they enhanced the phenotype of sca mutations but had no phenotype in the presence of a wild-type sca allele. This suggests that the FReD contributes to SCA function by binding to other components of the bristle determination pathway, increasing the activity of the linked N-terminal region.  相似文献   

2.
R8 photoreceptor cells play a primary role in the differentiation of Drosophila eyes. In scabrous (sca) mutants, the pattern of R8 photoreceptor differentiation is altered. The sca gene is predicted to encode a secreted protein related in part to fibrinogen and tenascins. Using expression in Drosophila Schneider cells, we showed that sca encoded a dimeric glycoprotein which was secreted and found in soluble form in the tissue culture medium. The sca protein contained both N- and O-linked carbohydrates and interacted with heparin. This Schneider cell protein was similar to protein detected in embryos. We showed that sca mutations, along with conditional alleles of Notch (N) and Delta (Dl), each affected the pattern of cells expressing atonal (ato), the proneural gene required for R8 differentiation. In normal development, about 1 cell in 20 differentiates into an R8 cell; in the others, ato is repressed. N and Dl were required to repress ato in the vicinity of R8 cells, whereas sca had effects over several cell diameters. Certain antibodies detected uptake of sca protein several cells away from its source. The overall growth factor-like structure of sca protein, its solubility, and its range of effects in vivo are consistent with a diffusible role that complements mechanisms involving direct cell contact. We propose that as the morphogenic furrow advances, cell secreting sca protein control the pattern of the next ommatidial column.  相似文献   

3.
4.
Lee EC  Yu SY  Baker NE 《Current biology : CB》2000,10(15):931-934
Notch (N) is a receptor for signals that inhibit neural precursor specification [1-6]. As N and its ligand Delta (DI) are expressed homogeneously, other molecules may be differentially expressed or active to permit neural precursor cells to arise intermingled with nonneural cells [7,8]. During Drosophila wing development, the glycosyltransferase encoded by the gene fringe (fng) promotes N signaling in response to DI, but inhibits N signaling in response to Serrate (Ser), which encodes a ligand that is structurally similar to DI. Dorsal expression of Fng protein localizes N signaling to the dorsoventral (DV) wing margin [9-11]. The secreted protein Scabrous (Sca) is a candidate for modulation of N in neural cells. Mutations at the scabrous (sca) locus alter the locations where precursor cells form in the peripheral nervous system [12,13]. Unlike fringe, sca mutations act cell non-autonomously [12]. Here, we report that targeted misexpression of Sca during wing development inhibited N signaling, blocking expression of all N target genes. Sca reduced N activation in response to DI more than in response to Ser. Ligand-independent signaling by overexpression of N protein, or by expression of activated truncated N molecules, was not inhibited by Sca. Our results indicate that Sca can act on N to reduce its availability for paracrine and autocrine interactions with DI and Ser, and can act as an antagonist of N signaling.  相似文献   

5.
Senataxin is a large 303 kDa protein linked to neuron survival, as recessive mutations cause Ataxia with Oculomotor Apraxia type 2 (AOA2), and dominant mutations cause amyotrophic lateral sclerosis type 4 (ALS4). Senataxin contains an amino-terminal protein-interaction domain and a carboxy-terminal DNA/RNA helicase domain. In this study, we focused upon the common ALS4 mutation, L389S, by performing yeast two-hybrid screens of a human brain expression library with control senataxin or L389S senataxin as bait. Interacting clones identified from the two screens were collated, and redundant hits and false positives subtracted to yield a set of 13 protein interactors. Among these hits, we discovered a highly specific and reproducible interaction of L389S senataxin with a peptide encoded by the antisense sequence of a brain-specific non-coding RNA, known as BCYRN1. We further found that L389S senataxin interacts with other proteins containing regions of conserved homology with the BCYRN1 reverse complement-encoded peptide, suggesting that such aberrant protein interactions may contribute to L389S ALS4 disease pathogenesis. As the yeast two-hybrid screen also demonstrated senataxin self-association, we confirmed senataxin dimerization via its amino-terminal binding domain and determined that the L389S mutation does not abrogate senataxin self-association. Finally, based upon detection of interactions between senataxin and ubiquitin–SUMO pathway modification enzymes, we examined senataxin for the presence of ubiquitin and SUMO monomers, and observed this post-translational modification. Our senataxin protein interaction study reveals a number of features of senataxin biology that shed light on senataxin normal function and likely on senataxin molecular pathology in ALS4.  相似文献   

6.
7.
The protein 4.1 superfamily is comprised of a diverse group of cytoplasmic proteins, many of which have been shown to associate with the plasma membrane via binding to specific transmembrane proteins. Coracle, a Drosophila protein 4.1 homologue, is required during embryogenesis and is localized to the cytoplasmic face of the septate junction in epithelial cells. Using in vitro mutagenesis, we demonstrate that the amino-terminal 383 amino acids of Coracle define a functional domain that is both necessary and sufficient for proper septate junction localization in transgenic embryos. Genetic mutations within this domain disrupt the subcellular localization of Coracle and severely affect its genetic function, indicating that correct subcellular localization is essential for Coracle function. Furthermore, the localization of Coracle and the transmembrane protein Neurexin to the septate junction display an interdependent relationship, suggesting that Coracle and Neurexin interact with one another at the cytoplasmic face of the septate junction. Consistent with this notion, immunoprecipitation and in vitro binding studies demonstrate that the amino-terminal 383 amino acids of Coracle and cytoplasmic domain of Neurexin interact directly. Together these results indicate that Coracle provides essential membrane-organizing functions at the septate junction, and that these functions are carried out by an amino-terminal domain that is conserved in all protein 4.1 superfamily members.  相似文献   

8.
RGS proteins (Regulators of G protein Signaling) are a recently discovered family of proteins that accelerate the GTPase activity of heterotrimeric G protein alpha subunits of the i, q, and 12 classes. The proteins share a homologous core domain but have divergent amino-terminal sequences that are the site of palmitoylation for RGS-GAIP and RGS4. We investigated the function of palmitoylation for RGS16, which shares conserved amino-terminal cysteines with RGS4 and RGS5. Mutation of cysteine residues at residues 2 and 12 blocked the incorporation of [3H]palmitate into RGS16 in metabolic labeling studies of transfected cells or into purified RGS proteins in a cell-free palmitoylation assay. The purified RGS16 proteins with the cysteine mutations were still able to act as GTPase-activating protein for Gialpha. Inhibition or a decrease in palmitoylation did not significantly change the amount of protein that was membrane-associated. However, palmitoylation-defective RGS16 mutants demonstrated impaired ability to inhibit both Gi- and Gq-linked signaling pathways when expressed in HEK293T cells. These findings suggest that the amino-terminal region of RGS16 may affect the affinity of these proteins for Galpha subunits in vivo or that palmitoylation localizes the RGS protein in close proximity to Galpha subunits on cellular membranes.  相似文献   

9.
Spinal muscular atrophy is a common often lethal neurodegenerative disease resulting from deletions or mutations in the survival motor neuron gene (SMN). SMN is ubiquitously expressed in metazoan cells and plays a role in small nuclear ribonucleoprotein assembly and pre-mRNA splicing. Here we characterize the Schizosacharomyces pombe orthologue of SMN (yeast SMN (ySMN)). We report that the ySMN protein is essential for viability and localizes in both the cytoplasm and the nucleus. Like human SMN, we show that ySMN can oligomerize. Remarkably, ySMN interacts directly with human SMN and Sm proteins. The highly conserved carboxyl-terminal domain of ySMN is necessary for the evolutionarily conserved interactions of SMN and required for cell viability. We also demonstrate that the conserved amino-terminal region of ySMN is not required for SMN and Sm binding but is critical for the housekeeping function of SMN.  相似文献   

10.
Spliceosomal Prp38 proteins contain a conserved amino-terminal domain, but only higher eukaryotic orthologs also harbor a carboxy-terminal RS domain, a hallmark of splicing regulatory SR proteins. We show by crystal structure analysis that the amino-terminal domain of human Prp38 is organized around three pairs of antiparallel α-helices and lacks similarities to RNA-binding domains found in canonical SR proteins. Instead, yeast two-hybrid analyses suggest that the amino-terminal domain is a versatile protein–protein interaction hub that possibly binds 12 other spliceosomal proteins, most of which are recruited at the same stage as Prp38. By quantitative, alanine surface-scanning two-hybrid screens and biochemical analyses we delineated four distinct interfaces on the Prp38 amino-terminal domain. In vitro interaction assays using recombinant proteins showed that Prp38 can bind at least two proteins simultaneously via two different interfaces. Addition of excess Prp38 amino-terminal domain to in vitro splicing assays, but not of an interaction-deficient mutant, stalled splicing at a precatalytic stage. Our results show that human Prp38 is an unusual SR protein, whose amino-terminal domain is a multi-interface protein–protein interaction platform that might organize the relative positioning of other proteins during splicing.  相似文献   

11.
12.
The obligate intracellular, gram‐negative bacterium Rickettsia is the causative agent of spotted fevers and typhus in humans. Surface cell antigen (sca) proteins surround these bacteria. We recently reported the co‐localization of one of these proteins, sca4, with vinculin in cells at sites of focal adhesions and demonstrated that two vinculin binding sites directed the sca4/vinculin interaction. Here we report the 2.2 Å crystal structure of the conserved N‐terminal 38 kDa domain of sca4 from Rickettsia rickettsii. The structure reveals two subdomains. The first is an all‐helical domain that is folded in a fashion similar to the dimeric assembly chaperone for rubisco, namely RbcX. The following and highly conserved β‐strand domain lacks significant structural similarity with other known structures and to the best of our knowledge represents a new protein fold.  相似文献   

13.
In at least nine inherited diseases polyglutamine expansions cause neurodegeneration associated with protein misfolding and the formation of ubiquitin-conjugated aggregates. Although expanded polyglutamine triggers disease, functional properties of host polyglutamine proteins also must influence pathogenesis. Using complementary in vitro and cell-based approaches we establish that the polyglutamine disease protein, ataxin-3, is a poly-ubiquitin-binding protein. In stably transfected neural cell lines, normal and expanded ataxin-3 both co-precipitate with poly-ubiquitinated proteins that accumulate when the proteasome is inhibited. In vitro pull-down assays show that this reflects direct interactions between ataxin-3 and higher order ubiquitin conjugates; ataxin-3 binds K48-linked tetraubiquitin but not di-ubiquitin or mono-ubiquitin. Further studies with domain-deleted and site-directed mutants map tetra-ubiquitin binding to ubiquitin interaction motifs situated near the polyglutamine domain. In surface plasmon resonance binding analyses, normal and expanded ataxin-3 display similar submicromolar dissociation constants for tetra-ubiquitin. Binding kinetics, however, are markedly influenced by the surrounding protein context; ataxin-3 that lacks the highly conserved, amino-terminal josephin domain shows significantly faster association and dissociation rates for tetra-ubiquitin binding. Our results establish ataxin-3 as a poly-ubiquitin-binding protein, thereby linking its normal function to protein surveillance pathways already implicated in polyglutamine pathogenesis.  相似文献   

14.
Interactions are described between the Notch locus of Drosophila melanogaster, and two other loci, scabrous and vestigial, which respectively affect the eyes and wings. The Notch locus is responsible for mediating decisions of cell fate throughout development in many different tissues. Mutations and duplications of vestigial and scabrous alter the severity of phenotypes associated with Notch mutations and duplications in a manner that is essentially tissue- and allele-specific. These interactions indicate that the products of vestigial and scabrous act in conjunction with Notch to stimulate the differentiation of specific cell types.  相似文献   

15.
The product of the VPS1 gene, Vps1p, is required for the sorting of soluble vacuolar proteins in the yeast Saccharomyces cerevisiae. We demonstrate here that Vps1p, which contains a consensus tripartite motif for guanine nucleotide binding, is capable of binding and hydrolyzing GTP. Vps1p is a member of a subfamily of large GTP-binding proteins whose members include the vertebrate Mx proteins, the yeast MGM1 protein, the Drosophila melanogaster shibire protein, and dynamin, a bovine brain protein that bundles microtubules in vitro. Disruption of microtubules did not affect the fidelity or kinetics of vacuolar protein sorting, indicating that Vps1p function is not dependent on microtubules. Based on mutational analyses, we propose a two-domain model for Vps1p function. When VPS1 was treated with hydroxylamine, half of all mutations isolated were found to be dominant negative with respect to vacuolar protein sorting. All of the dominant-negative mutations analyzed further mapped to the amino-terminal half of Vps1p and gave rise to full-length protein products. In contrast, recessive mutations gave rise to truncated or unstable protein products. Two large deletion mutations in VPS1 were created to further investigate Vps1p function. A mutant form of Vps1p lacking the carboxy-terminal half of the protein retained the capacity to bind GTP and did not interfere with sorting in a wild-type background. A mutant form of Vps1p lacking the entire GTP-binding domain interfered with vacuolar protein sorting in wild-type cells. We suggest that the amino-terminal domain of Vps1p provides a GTP-binding and hydrolyzing activity required for vacuolar protein sorting, and the carboxy-terminal domain mediates Vps1p association with an as yet unidentified component of the sorting apparatus.  相似文献   

16.
17.
18.
Norrin and Frizzled4 (Fz4) function as a ligand-receptor pair to control vascular development in the retina and inner ear. In mice and humans, mutations in either of the corresponding genes lead to defects in vascular development. The present work is aimed at defining the sequence determinants of binding specificity between Norrin and the Fz4 amino-terminal ligand-binding domain (the "cysteine-rich domain" (CRD)). The principal conclusions are as follows: 1) Norrin binds to the Fz4 CRD and does not detectably bind to the 14 other mammalian Frizzled and secreted Frizzled-related protein CRDs; 2) Norrin and Xenopus Wnt8 recognize largely overlapping regions of the Fz4 CRD; 3) surface determinants on the Fz4 and Fz8 CRDs that allow Norrin to distinguish between these two CRDs reside within several small regions on one face of the CRD; 4) Norrin function depends critically on three pairs of cysteines that form the highly conserved trio of disulfide bonds shared among all cystine knot proteins, but the remaining two putative disulfide bonds are less important; 5) Norrin-CRD binding depends on a largely contiguous group of amino acids in the extended beta-sheet domain of Norrin that are predicted to face away from the interface between the two monomers in the Norrin homodimer; 6) Norrin-CRD binding is strongly modulated by interactions involving charged amino acid side chains; and 7) Norrin-CRD binding is enhanced approximately 10-fold by the addition of heparin. These observations are discussed in the context of Frizzled signaling and the structure and function of other cystine knot proteins.  相似文献   

19.
The SecY protein of Escherichia coli and its homologues in other organisms, are integral components of the cellular protein translocation machinery. Suppressor mutations that alter SecY (the prlA alleles) broaden the specificity of this machinery and allow secretion of precursor proteins with defective signal sequences. Twenty-five prlA alleles have been characterized. These suppressor mutations were found to cluster in regions corresponding to three distinct topological domains of SecY. Based on the nature and position of the prlA mutations, we propose that transmembrane domain 7 of SecY functions in signal sequence recognition. Results suggest that this interaction may involve a right-handed supercoil of alpha-helices. Suppressor mutations that alter this domain appear to prevent signal sequence recognition, and this novel mechanism of suppression suggests a proofreading function for SecY. We propose that suppressor mutations that alter a second domain of SecY, transmembrane helix 10, also affect this proof-reading function, but indirectly. Based on the synthetic phenotypes exhibited by double mutants, we propose that these mutations strengthen the interaction with another component of the translocation machinery, SecE. Suppressor mutations were also found to cluster in a region corresponding to an amino-terminal periplasmic domain. Possible explanations for this unexpected finding are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号