首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent reports indicate that luteinizing hormone-releasing hormone (LHRH) releases prolactin (PRL) under some circumstances. We examined the chronic effects of LHRH, growth hormone-releasing hormone (GHRH), and corticotrophin-releasing hormone (CRH) on the release of PRL, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) by pituitary allografts in hypophysectomized, orchidectomized hamsters. Entire pituitary glands removed from 7-week-old-male Golden Syrian hamsters were placed under the renal capsule of hypophysectomized, orchidectomized 12-week-old hamsters. Beginning 6 days postgrafting, hamsters were injected subcutaneously twice daily with 1 microgram LHRH, 4 micrograms GHRH, or 4 micrograms CRH in 100 microliter of vehicle for 16 days. Six hosts from each of the four groups were decapitated on Day 17, 16 hr after the last injection. Prolactin, LH, and FSH were measured in serum collected from the trunk blood. Treatment with LHRH significantly elevated serum PRL levels above those measured in the other three groups, which were all similar to one another. Serum LH levels in hosts treated with vehicle were elevated above those measured in the other three groups. Serum FSH levels in hosts treated with LHRH were greater than FSH levels in any of the other three groups. These results indicate that chronic treatment with LHRH can stimulate PRL and FSH release by ectopic pituitary cells in the hamster.  相似文献   

2.
Acute changes of bovine pituitary luteinizing hormone-releasing hormone (LHRH) receptors in response to steroid challenges have not been documented. To investigate these changes 96 ovariectomized (OVX) cows were randomly allotted to one of the following treatments: 1) 1 mg estriol (E3); 2) 1 mg 17 beta-estradiol (E2); or 3) 25 mg progesterone (P) twice daily for 7 days before 1 mg E2 and continuing to the end of the experiment. Serum was collected at hourly intervals from 4 animals in each group for 28 h following estrogen treatment. Four animals from each treatment were killed at 4-h intervals from 0 to 28 h after estrogen injection to recover pituitaries and hypothalami. Treatment with E3 or E2 decreased serum luteinizing hormone (LH) within 3 h and was followed by surges of LH that were temporally and quantitatively similar (P greater than 0.05). Progesterone did not block the decline in serum LH, but did prevent (P less than 0.05) the E2-induced surge of LH. Serum follicle-stimulating hormone (FSH) was unaffected (P less than 0.05) by treatment. Pituitary concentrations of LH and FSH were maximal (P less than 0.001) at 16 h for E3 and 20 h for E2, whereas P prevented (P greater than 0.05) the pituitary gonadotropin increase. Concentrations of LHRH in the hypothalamus were similar (P greater than 0.05) among treatments. Pituitary concentrations of receptors for LHRH were maximal (P less than 0.005) 12 h after estrogen injection (approximately 8 h before the LH surge), even in the presence of P. This study demonstrated that in the OVX cow: 1) E2 and E3 increased the concentration of receptors for LHRH and this increase occurred before the surge of LH; and 2) P did not block the E2-induced increase in pituitary receptors for LHRH but did prevent the surge of LH.  相似文献   

3.
The present series of experiments was conducted in an attempt to correlate previously reported dose-dependent and site-selective inhibitory effects of an antiestrogen, CI-628, on 17 beta-estradiol (E2)-receptor interactions in the anterior pituitary gland (AP) and hypothalamus with its effects on the preovulatory surges of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and prolactin. The effects of CI-628 on the response of the AP to luteinizing hormone-releasing hormone (LHRH) and thyrotropin-releasing hormone (TRH) also were examined. In the first study, rats exhibiting 4-day estrous cycles were injected with various doses (0.02, 0.20, 2.0, and 20 mg/kg) of CI-628 or vehicle at 0900 h on diestrus-2 and proestrus. The preovulatory LH surge and both preovulatory and secondary FSH surges were marginally affected by 0.02 mg/kg CI-628, but were completely abolished by higher doses. In contrast, a dose of 0.20 mg/kg only delayed the prolactin surge; however, higher doses were effective in extinguishing cyclic prolactin release. In a second experiment, CI-628 in rats treated on diestrus-2 and proestrus exerted a dose-dependent suppression of the AP LH response to an initial injection of LHRH on proestrous afternoon in rats whose endogenous LH surges were blocked by phenobarbital. However, AP LH responses to a second LHRH injection to assess the self-priming capacity of LHRH were attenuated only in rats given 0.20, 2.0, and 20 mg/kg CI-628. Contrastingly, the AP prolactin response to TRH was suppressed only in rats given 0.20 mg/kg CI-628.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effect of 5 alpha-dihydroprogesterone (5 alpha-DHP) on gonadotropin release was examined in the immature acutely ovariectomized (OVX) rat primed with a low dose of estradiol (E2). Treatment with various doses of 5 alpha-DHP given in combination with E2 increased levels of follicle-stimulating hormone (FSH) but had no effect on serum luteinizing hormone (LH). A single injection of a maximally stimulating dose of 5 alpha-DHP (0.4 mg/kg) stimulated increases in serum FSH at 1200 h and, 6 h later, at 1800 h. Pituitary LH and FSH content was dramatically enhanced by 1600 h and levels remained elevated at 1800 h. The administration of pentobarbital at 1200 h, versus 1400 h or 1600 h, prevented the increase in basal serum FSH levels at 1800 h, implying that the release of hypothalamic LH releasing hormone (LHRH) is modulated by 5 alpha-DHP. In addition, changes in pituitary sensitivity to LHRH as a result of 5 alpha-DHP were measured and a significant increase in the magnitude of FSH release was observed at 1200 h and 1800 h. Although the LH response to LHRH in 5 alpha-DHP-treated rats was not different from controls, the duration of LH release was lengthened. These results suggest that 5 alpha-DHP may stimulate FSH release by a direct action at the pituitary level. Together, these observations support the theory that 5 alpha-DHP mediates the facilitative effect of progesterone on FSH secretion and further suggests an action of 5 alpha-DHP in this phenomenon at both pituitary and hypothalamic sites.  相似文献   

5.
To more completely assess the means by which alcohol impairs the female reproductive cycle in rats, we have measured hypothalamic luteinizing hormone-releasing hormone (LHRH), pituitary LHRH receptor content, and the serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), prolactin (Prl), and progesterone (P). After two successive cycles, the animals began receiving either an alcohol or a isocaloric control liquid diet regimen beginning on the first day of diestrus, with continued monitoring of the estrous cycle throughout the experiment. An additional set of controls consisted of animals maintained on lab chow and water provided ad libitum. Our results indicate that those animals receiving the control diets showed uninterrupted estrous patterns, whereas those animals receiving the alcohol diet remained in diestrus. Additionally, the alcohol-treated animals showed an increase (p less than 0.05) in LHRH content, with a concomitant decrease (p less than 0.01) in serum LH, and an increase (p less than 0.01) in serum Prl. No significant differences were detected in serum FSH levels or pituitary LHRH receptor content. No differences were detected in serum P levels. These results indicate that short-term alcohol administration disrupts the female reproductive cycle, causing persistent diestrus, and support our hypothesis that the alcohol-induced depression in serum LH levels is due to a diminished release rate of hypothalamic LHRH.  相似文献   

6.
Changes at the anterior pituitary gland level which result in follicle-stimulating hormone (FSH) release after ovariectomy in metestrous rats were investigated. Experimental rats were ovariectomized at 0900 h of metestrus and decapitated at 1000, 1100, 1300, 1500, 1700 or 1900 h of metestrus. Controls consisted of untreated rats killed at 0900 or 1700 h and rats sham ovariectomized at 0900 h and killed at 1700 h. Trunk blood was collected and the serum assayed for FSH and luteinizing hormone (LH) concentrations. The anterior pituitary gland was bisected. One-half was used to assay for FSH concentration. The other half was placed in culture medium for a 30-min preincubation and then placed in fresh medium for a 2-h incubation (basal FSH and LH release rates). The basal FSH release rate and the serum FSH concentration rose significantly by 4 h postovariectomy and remained high for an additional 6 h. The basal FSH release rate and the serum FSH concentration correlated positively (r=0.71 with 72 degrees of freedom) and did not change between 0900 and 1700 h in untreated or sham-ovariectomized rats. In contrast, the serum LH concentration and the basal LH release rate did not increase after ovariectomy. Ovariectomy had no significant effect on anterior pituitary gland FSH concentration. The results suggest that the postovariectomy rise in serum FSH concentration is the result, at least in part, of changes which cause an increase in the basal FSH secretion rate (secretion independent of the immediate presence of any hormones of nonanterior pituitary gland origin). The similarities between the selective rises in the basal FSH release rate and the serum FSH concentration in the ovariectomized metestrous rat and in the cyclic rat during late proestrus and estrus raise the possibility that an increase in the basal FSH release rate may be involved in many or all situations in which serum FSH concentration rises independently of LH.  相似文献   

7.
Anterior pituitary (AP) glands were removed from adult female rats at different times throughout the estrous cycle, and the isohormones of follicle-stimulating hormone (FSH) present within them were separated by isoelectric focusing in polyacrylamide gels (PAGE-IEF; pH range 3.0-8.0). Gel eluents were analyzed for FSH content by radioimmunoassay (RIA) and radioreceptor assay (RRA). All AP samples exhibited several peaks of FSH immunoactivity within a pH range of 6.2-4.0; the major peak constantly exhibited an isoelectric point (pI) of 4.9-4.5. To quantify differences in the IEF pattern of AP-FSH between the pituitaries collected during the different days of the cycle, each PAGE-IEF profile was divided into 7 regions (pI 7.0-6.3 = Area 1, 6.2-5.5 = Area 2, 5.4-5.0 = Area 3, 4.9-4.5 = Area 4, 4.4-4.0 = Area 5, 3.9-3.5 = Area 6, and less than 3.5 = Area 7), and the amount of FSH present within each was determined. In all APs collected at 0900 h of diestrus 1 (D1) and 2 (D2), proestrus (P), and estrus (E); at 1300 h of D1, D2 and E; at 2200 h of P; and at 0200 h of E, the majority of FSH immunoactivity (37-55% of total FSH on gel) focused within Area 4, whereas Areas 2 and 3 contained minor amounts of FSH activity (11-26% and 14-24%, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
K A Elias  C A Blake 《Life sciences》1980,26(10):749-755
Experiments were undertaken to investigate if changes occur at the level of the anterior pituitary gland to result in selective follicle-stimulating hormone (FSH) release during late proestrus in the cyclic rat. At 1200 h proestrus, prior to the preovulatory luteinizing hormone (LH) surge in serum and the accompanying first phase of FSH release, serum LH and FSH concentrations were low. At 2400 h proestrus, after the LH surge and shortly after the onset of the second or selective phase of FSH release, serum LH was low, serum FSH was elevated about 4-fold, pituitary LH concentration was decreased about one-half and pituitary FSH concentration was not significantly decreased. During a two hour invitro incubation, pituitaries collected at 2400 h released nearly two-thirds less LH and 2.5 times more FSH than did pituitaries collected at 1200 h. Addition of luteinizing hormone releasing hormone (LHRH) to the incubations caused increased pituitary LH and FSH release. However, the LH and FSH increments due to LHRH in the 2400 h pituitaries were not different from those in the 1200 h pituitaries. The results indicate that a change occurs in the rat anterior pituitary gland during the period of the LH surge and first phase of FSH release which results in a selective increase in the basal FSH secretory rate. It is suggested that this change is primarily responsible for the selective increase in serum FSH which occurs during the second phase of FSH release.  相似文献   

9.
T A Kellom  J L O'Conner 《Steroids》1991,56(5):284-290
The effects of luteinizing hormone releasing hormone (LHRH) pulse amplitude, duration, and frequency on divergent gonadotropin secretion were examined using superfused anterior pituitary cells from selected stages of the rat estrous cycle. Cells were stimulated with one of five LHRH regimens. With low-amplitude LHRH pulses (regimen 1) in the presence of potentially estrogenic phenol red, LH response in pituitary cells from proestrus 1900, estrus 0800, and diestrus 1,0800 were all significantly larger (P less than 0.05) than the other stages tested. In the absence of phenol red, responsiveness at proestrus 1900 was significantly larger than proestrus 0800, proestrus 1500, and estrus 0800 (P less than 0.01, 0.05, and 0.05, respectively); other cycle stages tested were smaller. No significant differences were observed between cycle stages for follicle-stimulating hormone (FSH) secretion in the presence or absence of phenol red. Because pituitary cells at proestrus 1900 were the most responsive to low-amplitude 4 ng LHRH pulses, they were also used to study the effects of LHRH pulses of increased amplitude or duration and decreased frequency. Increasing the amplitude (regimen 2) or the duration (regimens 3 to 5) increased FSH secretion; this effect was greatest with regimens 3 and 5. When regimens 3 and 5 were studied in pituitary cells obtained at proestrus 1500, FSH was significantly increased by both regimes, but most by regimen 5; furthermore, LH release was significantly reduced. When regimens 3 and 5 were studied in pituitary cells obtained at estrus 0800, FSH release was elevated most significantly by regimen 5. Thus, variations in LHRH pulse regimen were found to be capable of inducing significant divergence in FSH release from superfused anterior pituitary cells derived from specific stages of the estrous cycle.  相似文献   

10.
The dependence of the acute increases in plasma gonadotropins following castration on luteinizing hormone-releasing hormone (LHRH) was assessed with the use of a potent LHRH antagonist [ALHRH; (Nac-L-Ala1,p-Cl-D-Phe2,D-Trp3,6) LHRH]. Blood samples were collected from male and female rats at the time of castration and 2, 4, 8, 12, 24 and 48 h following and plasma gonadotropin levels were determined. Immediately following castration (diestrus I for females) animals received one of the following treatments: females-vehicle, 100 micrograms ALHRH, 50 micrograms estrogen benzoate (EB), or 100 micrograms ALHRH + 50 micrograms EB; males-vehicle, 100 micrograms ALHRH, 500 micrograms testosterone propionate (TP), or 100 micrograms ALHRH + 500 micrograms TP. ALHRH blocked the selective increase in plasma follicle-stimulating hormone (FSH) observed in female rats as well as the parallel increases in both gonadotropins seen in male rats following castration. Administration of EB or ALHRH + EB to females significantly suppressed both gonadotropins compared with control levels. However, EB alone did not completely block the rise in plasma FSH in females. In males, all three treatments significantly suppressed the increases in both gonadotropins when compared with control levels. These data demonstrate that hypothalamic LHRH plays an essential role in the acute elevations of plasma gonadotropins following castration in rats. In addition, these data suggest that the selective rise of FSH in females is dependent on LHRH stimulation of pituitary gonadotropes.  相似文献   

11.
12.
Transfer of male golden (Syrian) hamsters from a 14L:10D (light:dark) to a 5L:19D photoperiod induced significant changes in pituitary function tested in vitro. Within 27 days after transfer to a 5L:19D photoperiod, basal prolactin (Prl) release was significantly depressed and response to dopamine (DA) was significantly enhanced as compared to Prl release by pituitaries from 14L: 10D hamsters. Follicle-stimulating hormone (FSH) release tended to be depressed after 9 or 27 days of 5L:19D exposure, but the effect was not significant. After 77 days of 5L:19D exposure, Prl release was further suppressed, while FSH release surpassed that seen in 14L:10D pituitaries. In vitro FSH response to luteinizing hormone releasing hormone (LHRH) was also enhanced at this time. After 15 weeks of exposure to a short photoperiod, FSH secretion was still elevated above control levels, but Prl release and Prl response to DA were no longer different from that of 14L: 10D controls. Secretion of luteinizing hormone (LH) in vitro, either basal or LHRH stimulated, was not affected by photoperiod at any time tested. From these results, we conclude that short photoperiod exposure does not reduce the pituitary's ability to secrete LH or FSH, although secretion of Prl is severely attenuated.  相似文献   

13.
This study examined the importance of pulsatile luteinizing hormone (LH) release on diestrus 1 (D1; metestrus) in the rat estrous cycle to ovarian follicular development and estradiol (E2) secretion. Single injections of a luteinizing hormone-releasing hormone (LHRH) antagonist given at -7.5 h prior to the onset of a 3-h blood sampling period on D1 reduced mean blood LH levels by decreasing LH pulse amplitude, while frequency was not altered. Sequential injections at -7.5 and -3.5 h completely eliminated pulsatile LH secretion. Neither treatment altered the total number of follicles/ovary greater than 150 mu in diameter, the number of follicles in any size group between 150 and 551 mu, or plasma E2, progesterone, or follicle-stimulating hormone (FSH) levels. However, both treatments with LHRH antagonist significantly increased the percentage of atretic follicles in the ovary. These data indicate that: 1) pulsatile LH release is an important factor in determining the rate at which follicles undergo atresia on D1; 2) reductions in LH pulse amplitude alone are sufficient to increase the rate of follicular atresia on D1; 3) an absence of pulsatile LH release for a period of up to 10 h on D1 is not sufficient to produce a decline in ovarian E2 secretion, most likely because the atretic process was in its early stages and had not yet affected a sufficient number of E2-secreting granulosa cells to reduce the follicle's capacity to secrete E2; and 4) suppression or elimination of pulsatile LH release on D1 is not associated with diminished FSH secretion.  相似文献   

14.
Preantral follicles of cyclic hamsters were isolated on proestrus, estrus and diestrus I, incubated for 3 h in 1 ml TC-199 containing 1 microgram ovine luteinizing hormone (LH) (NIH-S22), and the concentrations of progesterone (P), androstenedione (A) and estradiol (E2) determined by radioimmunoassay. At 0900-1000 h on proestrus (pre-LH surge) preantral follicles produced 2.4 +/- 0.3 ng A/follicle per 3 h, less than 100 pg E2/follicle and less than 250 pg P/follicle. At the peak of the LH surge (1500-1600 h) preantral follicles produced 1.8 +/- 0.2 ng P and 1.9 +/- 0.1 A and less than 100 pg E2/follicle. After the LH surge (1900-2000 h proestrus and 0900-1000 h estrus) preantral follicles were unable to produce A and E2 but produced 4.0 +/- 1.0 and 5.0 +/- 1.1 ng P/follicle, respectively. By 1500-1600 h estrus, the follicles produced 8.1 +/- 3.1 ng P/follicle but synthesized A (1.6 +/- 0.2 ng/follicle) and E2 (362 +/- 98 pg/follicle). On diestrus 1 (0900-1000 h), the large preantral-early antral follicles produced 1.9 +/- 0.3 ng A, 2.4 +/- 0.4 ng E2 and 0.7 +/- 0.2 ng P/follicle. Thus, there was a shift in steroidogenesis by preantral follicles from A to P coincident with the LH surge; then, a shift from P to A to E2 after the LH surge. The LH/follicle-stimulating hormone (FSH) surges were blocked by administration of 6.5 mg phenobarbital (PB)/100 g BW at 1300 h proestrus. On Day 1 of delay (0900-1000 h) these follicles produced large quantities of A (2.2 +/- 0.2 ng/follicle) and small amounts of E2 (273 +/- 27 pg/follicle) but not P (less than 250 pg/follicle).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The effect of a superactive agonistic analog of luteinizing hormone-releasing hormone (LHRH), [D-Trp6]LHRH on prolactin (PRL) secretion by perifused rat pituitary cells was investigated. Constant infusion of [D-Trp6]LHRH (0.5 ng/min) for 2-3 h elicited a significant decrease in PRL secretion by these cells. This decrease in PRL release started ca. 30 min after the beginning of the infusion with the LHRH analog and lasted up to 1.5-2 h. [D-Trp6]LHRH significantly stimulated luteinizing hormone (LH) secretion during the first 30 min of peptide infusion; thereafter, LH levels began to return to control values. In animals pretreated in vivo with 50 micrograms of [D-Trp6]LHRH (s.c.) 1 h before sacrifice, PRL secretion by the rat pituitary cell perifusion system was significantly lower than vehicle-injected controls throughout the entire [D-Trp6]LHRH infusion period. On the other hand, thyrotropin-releasing hormone (TRH)-stimulated PRL secretion was slightly, but significantly imparied by [D-Trp6]LHRH infusion, while dopamine (DA) inhibition of PRL release was unaffected by this same treatment. These results reinforce previous observations of a modulatory effect of [D-Trp6]LHRH, probably mediated by pituitary gonadotrophs, on PRL secretion by the anterior pituitary. In addition, our findings suggest that basal PRL secretion by the lactotroph may be dependent on a normal function of the gonadotroph. The collected data from this and previous reports support the existence of a functional link between gonadotrophs and lactotrophs in the rat pituitary gland.  相似文献   

16.
Inoculation of cyclic female rats with the prolactin (Prl)/growth hormone-secreting pituitary tumor, MtT.W15, resulted in a cessation of estrous cyclicity within 5--10 days. Associated with this acyclicity was a persistently low serum concentration of estradiol and marked increases in both circulating Prl and progesterone. At Day 26 of acyclicity, basal serum luteinizing hormone (LH) values measured in samples taken every 20 min from 0900--1100 h were significantly reduced when compared to cyclic, nontumor animals on diestrus Day 2. There was no difference in basal follicle-stimulating hormone (FSH) concentrations. In a separate group of acyclic, tumor-bearing females 42--56 days after transplantation, a single s.c. injection of 20 micrograms estradiol benzoate (EB) at 1030 h elicited significant increases in both serum LH and FSH values between 1700 and 1830 h on the next day. The magnitude of the LH surge was reduced and that of FSH was increased in tumor-bearing animals when compared to cyclic, nontumor females given a similar EB injection on diestrus Day 1. These results demonstrate that chronic hyperprolactinemia is associated with inhibition of basal LH secretion and ovarian estrogen production and an increase in circulating progesterone concentrations. Nevertheless, the stimulatory feedback effects of estrogen on LH and FSH release are still present and functioning in acyclic female rats under chronically hyperprolactinemic conditions. These data suggest that the cessation of regular ovulatory cycles associated with hyperprolactinemia may be due to a deficiency of LH and/or estrogen secretion, but not to a lack of central nervous system response to the stimulatory feedback action of estrogen.  相似文献   

17.
Kisspeptins, coded by the KiSS-1 gene, regulate aspects of the reproductive axis by stimulating GnRH release via the G protein coupled receptor, GPR54. Recent reports show that KiSS/GPR54 may be key mediators in photoperiod-controlled reproduction in seasonal breeders, and that KiSS-1/GPR54 are expressed in the hypothalamus, ovaries, placenta, and pancreas. This study examined the expression of KiSS-1/GPR54 mRNA and protein in ovaries of Siberian hamsters (Phodopus sungorus). Ovaries from cycling hamsters were collected during proestrus (P), estrus (E), diestrus I (DI), and diestrus II (DII). To examine KiSS-1/GPR54 during stimulated recrudescence, additional hamsters were maintained either in long day (LD 16L:8D, control) or short day (SD 8L:16D) for 14 weeks and then transferred to LD for 0-8 weeks. Staining of KiSS-1/GPR54 protein was detected by immunohistochemistry in steroidogenic cells of pre-antral and antral follicles, and corpora lutea. Immunostaining peaked in P and E, but decreased in the diestrus stages (P < 0.05). In recrudescing ovaries, KiSS-1/GPR54 immunostaining was low after 14 weeks of SD exposure (post-transfer [PT] week 0), and increased during the early weeks of recrudescence. Expression of KiSS-1/GPR54 mRNA was low with short day exposure, but increased during recrudescence and was higher at PT week 8 as compared to PT weeks 0 and 2 (P < 0.05). The elevated KiSS-1/GPR54 expression during P and E suggests a potential role in ovulation in Siberian hamsters. Transient increases in KiSS-1/GPR54 expression following LD stimulation are also suggestive of possible involvement in ovulation and/or restoration of ovarian function.  相似文献   

18.
We have previously shown that, in the rat, ovarian beta-adrenergic receptor content varies during the time of puberty, with values first increasing and then decreasing abruptly on the afternoon of the first proestrus, i.e., at the time of the preovulatory surge of gonadotropins and prolactin (Prl). In the present study, experiments have been conducted to determine: 1) if hormones other than follicle stimulating hormone (FSH) that are known to be involved in regulating prepubertal ovarian function can mimic the facilitatory effect of FSH on progesterone (P) response of granulosa cells to beta-adrenergic stimulation; 2) if beta-adrenergic receptor content of granulosa cells is under hormonal regulation; and 3) whether the facilitatory effect of hormones on the P response to beta-adrenergic stimulation is due to an increased cyclic AMP response to receptor activation. A 48-h in vitro preexposure of granulosa cells from juvenile, 29-day-old ovaries to the pituitary hormones Prl, luteinizing hormone (LH), or FSH showed that only the latter was able to facilitate the subsequent P response to Zinterol, a beta2-adrenergic agonist. Follicle-stimulating hormone also increased basal P release. Of the two nonpituitary hormones examined, the luteinizing hormone-releasing hormone (LHRH) agonist D-(Ala6,Pro9)-LHRH-ethylamide (LHRH-A) failed to affect P responsiveness, whereas corticosterone enhanced both basal P release and P response to Zinterol. This effect was less pronounced than that of FSH. Luteinizing hormone, Prl and corticosterone decreased beta-adrenergic receptor content to different extents, with corticosterone being the most effective and LH the least (50% and 15% decrease, respectively); LHRH-A was ineffective.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The effects of exogenous gonadal steroids, testosterone (T), and 17beta-estradiol (E(2)) upon the hypothalamo-pituitary-gonadal axis were reported to be different between prepubertal and adult Siberian hamsters. Utilizing an in vitro static culture system, we investigated if age-related differences in steroid responsiveness occurs at the pituitary. Prepubertal (20 days old) or adult (140 days old) male Siberian hamsters were implanted with 1 mm silastic capsules containing undiluted T, E(2) or cholesterol (Ch, control). After 15 days, pituitaries were removed, incubated in vitro, and subjected to the following treatments: two baseline measurements, one challenge with 10ng/ml of D-Lys(6)-gonadotropin-releasing hormone (GnRH), and three post-challenge washes. Fractions were collected every 30 minutes and measured for follicle-stimulating hormone (FSH) and luteinizing hormone (LH). T and E(2 )reduced basal secretion of LH and FSH in juveniles but not adults. In juveniles, E(2) increased GnRH-induced FSH and LH secretion, while T augmented GnRH-induced FSH secretion but attenuated GnRH-induced LH secretion. Steroid treatment had no effect on GnRH-stimulated LH or FSH release in adults. The only effect of steroid hormones upon adult pituitaries was the more rapid return of gonadotropin secretion to baseline levels following a GnRH challenge. These data suggest both basal and GnRH-induced gonadotropin secretion are more sensitive to steroid treatment in juvenile hamsters than adults. Further, differential steroidal regulation of FSH and LH at the level of the pituitary in juveniles might be a mechanism for the change in sensitivity to the negative effects of steroid hormones that occurs during the pubertal transition.  相似文献   

20.
In the brown hare, fertile mating takes place from the beginning of December to September. Seasonal variations of basal concentrations of LH and FSH, and pituitary response to a monthly i.v. injection of LHRH were studied in intact control females and in females ovariectomized during the seasonal anoestrus (OVX1) or during the breeding season (OVX2). In intact females, both basal and LHRH-stimulated LH levels showed an annual variation, with minimal values during anoestrus. During the breeding season, the LH response to LHRH exhibited a biphasic pattern. In contrast, there was no clear seasonal variation in basal and LHRH-stimulated FSH concentrations. After ovariectomy during anoestrus, basal LH remained low for 2 months and began to increase in December. After ovariectomy during the breeding season, LH basal concentrations increased within a few days after the operation. Thereafter, LH values remained high in both groups of females until September, and decreased significantly as in intact females. The pattern of LH release after LHRH remained monophasic in the two groups of ovariectomized females. In OVX1 females, the LH response increased as early as October, was maximum from December to April and decreased progressively until October. IN OVX2 females, the LH response decreased regularly after ovariectomy to a minimum in October. In the 2 groups of ovariectomized females, basal FSH concentrations and pituitary response to LHRH rose rapidly after ovariectomy and did not vary significantly thereafter. These results showed a direct central effect of season on the regulation of basal concentrations of LH, modulated by a negative feed-back of ovarian secretions during the breeding season. In intact hares, the enhanced LH response after LHRH during the breeding season was related to an acute positive effect of ovarian secretions. The regulation of FSH was less dependent on season and remained under a negative control of the ovary throughout the year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号