首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
摘要 目的:间隙连接Alpha-1蛋白(Gap Junction Alpha-1,GJA1)是间隙连接中分布最广泛的蛋白,并在多种肿瘤中起促癌作用,但其在结直肠癌发生、发展的作用研究甚少。本实验旨在探究GJA1在结直肠癌组织中的表达情况及其对结直肠癌细胞系侵袭、转移能力的影响,以期为结直肠癌的诊断和预后寻找新的生物标志物。方法:收集92对结直肠癌及其癌旁组织样本,提取组织RNA,利用qRT-PCR检测GJA1相对表达量,并分析GJA1表达与临床病理特征及预后的相关性。在HCT116和HCT8两种结直肠癌细胞系中分别构建GJA1过表达载体和敲减载体,利用qRT-PCR和、Western Blot检测上皮间充质转化(epithelial-mesenchymal transition, EMT)相关蛋白E-Cadherin、N-Cadherin、Vimentin和Snail的表达变化,利用Wound healing和Transwell实验观察其迁移、侵袭能力的变化。结果:相对于癌旁组织,GJA1在结直肠癌组织中显著低表达。并且结直肠癌中低表达的GJA1与肿瘤分化程度、浸润深度、淋巴血管转移相关,低表达GJA1结直肠癌患者显示更差的总体生存率和更低的无病生存率。此外,过表达GJA1后,结直肠癌细胞E-cadherin的表达升高,N-cadherin、Vimentin和Snail的表达降低,划痕愈合减慢,Transwell转移细胞减少;而敲减GJA1后,结直肠癌细胞E-Cadherin的表达降低,N-Cadherin、Vimentin和Snail的表达升高,划痕愈合加快,Transwell转移细胞增多。结论:GJA1在结直肠癌中低表达,其表达降低可通过EMT促进结直肠癌的侵袭、转移并影响病人预后。  相似文献   

3.
4.
Vascular endothelial growth factor receptor-1 (VEGFR-1 or Flt-1), a tyrosine kinase receptor, is highly expressed in breast cancer tissues, but near absent in normal breast tissue. While VEGFR-1 expression is associated with poor prognosis of women with breast cancer, it is not clear whether it is involved in the aggressiveness of breast cancer. Thus, the present study examined whether VEGFR-1 activation is associated with the invasiveness of breast cancer. We reported that VEGFR-1 was detected in 60.6% of invasive breast carcinoma tissue sections. In addition, VEGFR-1 expression positively correlated with lymph node-positive tumor status, low expression level of membranous E-cadherin, and high expression levels of N-cadherin and Snail. We found that PlGF-mediated VEGFR-1 activation promoted migration and invasion in MCF-7 (luminal) cells and led to morphologic and molecular changes of epithelial-mesenchymal transition (EMT). This was blocked by the down-regulation of VEGFR-1. Conversely, down-regulation of VEGFR-1 in MDA-MB-231 (post-EMT) cells resulted in morphologic and molecular changes similar to mesenchymal-epithelial transition (MET), and exogenous PlGF could not reverse these changes. Moreover, VEGFR-1 activation led to an increase in nuclear translocation of Snail. Finally, MDA-MB-231 cells expressing shRNA against VEGFR-1 significantly decreased the tumor growth and metastasis capacity in a xenograft model. Histological examination of VEGFR-1/shRNA-expressing tumor xenografts showed up-regulation of E-cadherin and down-regulation of N-cadherin and Snail. These findings suggest that VEGFR-1 may promote breast cancer progression and metastasis, and therapies that target VEGFR-1 may be beneficial in the treatment of breast cancer patients.  相似文献   

5.
上皮间质转化(epithelial-mesenchymal transition,EMT)与肿瘤侵袭转移密切相关.虽然肝细胞生长因子(hepatocyte growth factor,HGF)已被证实为肿瘤EMT的主要诱导剂,但是HGF诱导肿瘤EMT发生的分子机制尚不完全清楚.本研究旨在探讨Snail在HGF诱导肝癌细胞上皮间质转化中的作用.用HGF处理肝癌HepG2和Hep3B细胞,显微镜观察细胞形态变化,划痕试验及Transwell试验检测细胞迁移能力,Western印迹检测Met,AKT的磷酸化及蛋白质表达的变化,Western印迹与real-time RT-PCR检测上皮细胞表面标志E-Cadherin和间质细胞表面标志N-Cadherin、Fibronectin的表达变化,以及EMT相关转录因子的表达变化.经HGF处理的HepG2、Hep3B细胞,Met和AKT的磷酸化水平显著增强;相差倒置显微镜下观察细胞形态向间质型细胞形态转化;细胞划痕和Transwell试验检测细胞的迁移能力较对照组显著增强;Real-time RT-PCR和Western印迹实验显示HGF的诱导能上调间质标记蛋白的表达及下调上皮型标志蛋白的表达.进一步发现,HGF能上调转录因子Snail的表达,干扰Snail能逆转HGF对HepG2和Hep 3B细胞EMT发生的诱导作用.由此可见,HGF可能通过诱导Snail的表达促进肝癌细胞EMT的发生.这为阐明肝癌细胞侵袭转移机制,以及肝癌的防治提供新线索.  相似文献   

6.
7.
Our recent study demonstrated that higher expression of N-myc downregulated gene 1 (NDRG1) is closely correlated with poor prognosis in gastric cancer patients. In this study, we asked whether NDRG1 has pivotal roles in malignant progression including metastasis of gastric cancer cells. By gene expression microarray analysis expression of NDRG1 showed the higher increase among a total of 3691 up-regulated genes in a highly metastatic gastric cancer cell line (58As1) than their parental low metastatic counterpart (HSC-58). The highly metastatic cell lines showed decreased expression of E-cadherin, together with enhanced expression of vimentin and Snail. This decreased expression of E-cadherin was restored by Snail knockdown in highly metastatic cell lines. We next established stable NDRG1 knockdown cell lines (As1/Sic50 and As1/Sic54) from the highly metastatic cell line, and both of these cell lines showed enhanced expression of E-cadherin and decreased expression of vimentin and Snail. And also, E-cadherin promoter-driven luciferase activity was found to be increased by NDRG1 knockdown in the highly metastatic cell line. NDRG1 knockdown in gastric cancer cell showed suppressed invasion of cancer cells into surround tissues, suppressed metastasis to the peritoneum and decreased ascites accumulation in mice with significantly improved survival rates. This is the first study to demonstrate that NDRG1 plays its pivotal role in the malignant progression of gastric cancer through epithelial mesenchymal transition.  相似文献   

8.
9.
Hypoxia activates genetic programs that facilitate cell survival; however, in cancer, it may promote invasion and metastasis. In this study, we show that breast cancer cells cultured in 1.0% O(2) demonstrate changes consistent with epithelial-mesenchymal transition (EMT). Snail translocates to the nucleus, and E-cadherin is lost from plasma membranes. Vimentin expression, cell migration, Matrigel invasion, and collagen remodeling are increased. Hypoxia-induced EMT is accompanied by increased expression of the urokinase-type plasminogen activator receptor (uPAR) and activation of cell signaling factors downstream of uPAR, including Akt and Rac1. Glycogen synthase kinase-3beta is phosphorylated, and Snail expression is increased. Hypoxia-induced EMT is blocked by uPAR gene silencing and mimicked by uPAR overexpression in normoxia. Antagonizing Rac1 or phosphatidylinositol 3-kinase also inhibits development of cellular properties associated with EMT in hypoxia. Breast cancer cells implanted on chick chorioallantoic membranes and treated with CoCl(2), to model hypoxia, demonstrate increased dissemination. We conclude that in hypoxia, uPAR activates diverse cell signaling pathways that cooperatively induce EMT and may promote cancer metastasis.  相似文献   

10.

Background

Lymph node metastasis is a key event in the progression of breast cancer. Therefore it is important to understand the underlying mechanisms which facilitate regional lymph node metastatic progression.

Methodology/Principal Findings

We performed gene expression profiling of purified tumor cells from human breast tumor and lymph node metastasis. By microarray network analysis, we found an increased expression of polycomb repression complex 2 (PRC2) core subunits EED and EZH2 in lymph node metastatic tumor cells over primary tumor cells which were validated through real-time PCR. Additionally, immunohistochemical (IHC) staining and quantitative image analysis of whole tissue sections showed a significant increase of EZH2 expressing tumor cells in lymph nodes over paired primary breast tumors, which strongly correlated with tumor cell proliferation in situ. We further explored the mechanisms of PRC2 gene up-regulation in metastatic tumor cells and found up-regulation of E2F genes, MYC targets and down-regulation of tumor suppressor gene E-cadherin targets in lymph node metastasis through GSEA analyses. Using IHC, the expression of potential EZH2 target, E-cadherin was examined in paired primary/lymph node samples and was found to be significantly decreased in lymph node metastases over paired primary tumors.

Conclusions/Significance

This study identified an over expression of the epigenetic silencing complex PRC2/EED-EZH2 in breast cancer lymph node metastasis as compared to primary tumor and its positive association with tumor cell proliferation in situ. Concurrently, PRC2 target protein E-cadherin was significant decreased in lymph node metastases, suggesting PRC2 promotes epithelial mesenchymal transition (EMT) in lymph node metastatic process through repression of E-cadherin. These results indicate that epigenetic regulation mediated by PRC2 proteins may provide additional advantage for the outgrowth of metastatic tumor cells in lymph nodes. This opens up epigenetic drug development possibilities for the treatment and prevention of lymph node metastasis in breast cancer.  相似文献   

11.
The loss of E-cadherin expression leads to absence of tissue integrity, an essential step in tumor progression. Methylation of CpG islands in the promoter region of the CDH1 gene coding E-cadherin might be an alternative for gene silencing. In the present study, we investigate the expression of E-cadherin and hormone receptors in invasive ductal breast carcinoma (IDCs). Protein expression was analysed immunohistochemically in 87 cases, including 26 familial tumors. The most interesting results revealed a significantly reduced E-cadherin expression in cases with familial history compared to sporadic tumors (p=0.009), as well as with tumors ≤5 cm (p=0.022). Moreover, HER2 over-expression was associated with distant metastasis (p=0.011) and overall survival (p log rank=0.028). Tumors displaying negative/low HER2 expression combined with E-cadherin positivity confer better patient survival (p=0.052). Triple Negative tumors (TN) were more frequently found in patients with advanced grade (GIII) (p=0.001) and TNM (III+IV) (p=0.018) which supports the aggressive behavior of TN tumors. On the other hand, hypermethylation of CDH1 gene promoter was observed in 46% of hereditary cases and strongly associated with loss of E-cadherin expression (p=0.002). Furthermore, patients with unmethylated CDH1 pattern have a better 5-year disease free survival (p=0.021). In conclusion, in patients with hereditary breast cancer, the CpG methylation event contributes to the loss of E-cadherin expression. On the other hand, HER2 over-expression is predictive of worse prognosis, either alone or combined with loss of E-cadherin expression in Tunisian patients with breast cancer.  相似文献   

12.
小干扰RNA靶向VEGF基因体内外抑制乳腺癌细胞MCF-7的增殖   总被引:3,自引:0,他引:3  
 血管生成与肿瘤生长、侵袭、转移密切相关.血管内皮生长因子能特异地促进内皮细胞分裂、增殖及迁移,在肿瘤新生血管生成过程中起着至关重要的作用.通过RNAi抑制VEGF表达的抗血管生成疗法可有效应用于肿瘤治疗.本研究采用化学修饰的siRNA在体内外抑制VEGF基因表达,探讨化学修饰的siRNA介导的RNA干扰技术在乳腺癌基因治疗的可行性和特异性.选用阳离子脂质体LipofectamineTM2000作为转染试剂,将针对人VEGF基因的小干扰RNA(small interfering RNA,siRNA)转染人类乳腺细胞株MCF-7和裸鼠移植瘤,在体内外诱导RNAi.采用四甲基偶氮唑蓝(MTT)法,逆转录聚合酶链反应(RT-PCR),蛋白印迹实验等检测siRNA治疗组和对照组VEGF基因表达及细胞增殖变化.体外实验结果显示:靶向VEGF基因siRNA转染乳腺癌MCF-7细胞后,细胞生长抑制率达52.5%;VEGF的mRNA和蛋白表达水平显著降低(P<0.01);裸鼠体内实验结果显示:siRNA治疗组瘤组织的增长受到明显抑制;RT-PCR结果同时表明治疗组VEGF表达下调.体内外对照组各指标无显著变化.化学修饰的siRNA介导的RNAi在体内外均能成功下调靶基因VEGF的表达,抑制MCF-7细胞增殖,是潜在的肿瘤治疗新方法.  相似文献   

13.
14.
15.
MUC1, a tumor associated glycoprotein, is over-expressed in most cancers and can promote proliferation and metastasis. The objective of this research was to study the role of MUC1 in cancer metastasis and its potential mechanism. Pancreatic (PANC1) and breast (MCF-7) cancer cells with stable 'knockdown' of MUC1 expression were created using RNA interference. beta-Catenin and E-cadherin protein expression were upregulated in PANC1 and MCF-7 cells with decreased MUC1 expression. Downregulation of MUC1 expression also induced beta-catenin relocation from the nucleus to the cytoplasm, increased E-cadherin/beta-catenin complex formation and E-cadherin membrane localization in PANC1 cells. PANC1 cells with 'knockdown' MUC1 expression had decreased in vitro cell invasion. This study suggested that MUC1 may affect cancer cell migration by increasing E-cadherin/beta-catenin complex formation and restoring E-cadherin membrane localization.  相似文献   

16.
17.
18.
19.
20.
Modeling human breast cancer metastasis in mice: maspin as a paradigm   总被引:14,自引:0,他引:14  
Breast cancer is the most common cancer detected in women, accounting for nearly one out of every three cancers diagnosed in the United States. Most cancer patients do not die from the primary tumor but die due to metastasis. Therefore, the study of metastasis is of most importance both to the clinician and patient. In the past, animal models have been used in breast cancer research and mammary gland biology. Our group has also established several animal models to address the function of a novel tumor suppressor gene maspin in breast tumor progression. Maspin was initially isolated from normal mammary epithelial cells. Its expression was down regulated in breast tumors. To test the protective role of maspin overexpression in mammary tumor progression, we crossed maspin overexpression transgenic mice (WAP-maspin) with a strain of oncogenic WAP-SV40 T antigen mice. The bitransgenic mice had reduced tumor growth rate and metastasis. Maspin overexpression increased the rate of apoptosis of both preneoplastic and carcinomatous mammary epithelial cells. Maspin reduced tumor growth through a combination of reduced angiogenesis and increased apoptosis. In a separate animal experiment, maspin overexpressing mammary tumor cells (TM40D) were implanted into the fat pad of syngeneic mice. TM40D tumor cells were very invasive and metastatic. However, both primary tumor growth and metastasis were significantly blocked in TM40D cells that overexpress maspin as a consequence of plasmid or retrovirus infection. These evidences demonstrate that maspin function to inhibit primary tumor growth as well as invasion and metastasis. Elucidating the molecular mechanism of maspin action will shed light on our understanding of breast cancer invasion and metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号