首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As part of our aim to investigate the contribution of the tyrosine residue found in the 14 position of the A-chain to the biological activity of insulin, we have synthesized six insulin analogues in which the A14 Tyr has been substituted by a variety of amino acid residues. We have selected three hydrophilic and charged residues—glutamic acid, histidine, and lysine—as well as three hydrophobic residues—cycloleucine, cyclohexylalanine, and naphthyl-(1)-alanine—to replace the A14 Tyr. All six analogues exhibit full agonist activity, reaching the same maximum stimulation of lipogenesis as is achieved with procine insulin. The potency for five of the six analogues, [A14 Glu]-, [A14 His]-, [A14 Lys]-, [A14 cycloleucine]-, and [A14 naphthyl-(1)-alanine]-insulins in receptor binding assays ranges from 40–71% and in stimulation of lipogenesis ranges from 35-120% relative to porcine insulin. In contrast, the potency of the sixth analogue, [A14 cyclohexylalanine]insulin, in both types of assays is less than 1% of the natural hormone. The retention time on reversed-phase high-performance liquid chromatography for the first five analogues is similar to that of bovine insulin, whereas for the sixth analogue, [A14 cyclohexylalanine]insulin, it is approximately 11 min longer than that of the natural hormone. This suggests a profound change in conformation of the latter analogue. Apparently, the A14 position of insulin can tolerate a wide latitude of structural alterations without substantial decrease in potency. This suggests that the A14 position does not participate directly in insulin receptor interaction. Only when a substitution which has the potential to disrupt the conformation of the molecule is made at this position, is the affinity for the receptor, and hence the biological potency, greatly reduced.  相似文献   

2.
Several 3-nitro-4-(N-protected aminomethyl)benzoic acids; with protection provided by tert.-butyloxycarbonyl (Boc), 9-fluorenylmethyloxycarbonyl (Fmoc), trifluoroacetyl (Tfa), dithiasuccinoyl (Dts), or phthaloyl (Phth), have been prepared by reproducible routes. Synthesis of Dts-handle 6 illustrates some particularly novel and efficient chemistry, and is preferred over more intricate routes to Boc-handle 3 and Fmoc-handle 4. The five handles were each evaluated for their application to the synthesis of peptide amides. Coupling onto amino-functionalized supports provided a general starting point for peptide chain assembly. The handle amino function was deblocked (Boc, Fmoc, Dts), the C-terminal residue was coupled as its N alpha-protected free acid, and ultimately the ortho-nitrobenzylamide anchorage linkage was cleaved photolytically to give the corresponding amide. Starting with handles 3, 4, and 6, several free and protected peptide amides were synthesized.  相似文献   

3.
We report the solid phase synthesis of a series of 16 linear analogues of the cyclic antagonist of the antidiuretic (V2) and the vasopressor (V1) responses to arginine vasopressin (AVP), d(CH2)5[D-Tyr(Et)2, Val4]AVP(A). Peptide 1, the linear precursor of (A), (CH2)5(SH)-CH2-CO-D-Tyr(Et)-Phe-Val-Asn-Cys-Pro-Arg-Gly-NH2 was modified at position six with alpha-L-aminobutyric acid (Abu) to give peptide 2. Further modifications of the Abu6 analogue (No. 2) at position one by substituting cyclohexylacetic acid (Caa), cyclohexylpropionic acid (Cpa), 1-adamantaneacetic acid (Aaa), phenylacetic acid (Phaa), tert.-butylacetic acid (t-Baa), isovaleric acid (Iva), propionic acid (Pa), L-penicillamine (P), tert.-butoxycarbonyl (Boc) or omitting any substituent at this position, and/or in combination with Arg-NH2(9), Ala-NH2(9), D-Arg8-Arg-NH2(9), and desGly9 modifications yielded the remaining 14 peptides. All 16 peptides were examined for agonistic and antagonistic potencies in AVP V2 and V1 assays in rats. Apart from the Cpa analogue and the analogue lacking any substituent in the 1-position, all exhibit substantial V2 and V1 antagonism. A number are as potent as (A) as V2 antagonists. With an anti-V2 pA2 = 8.11 +/- 0.07, Aaa-D-Tyr(Et)-Phe-Val-Asn-Abu-Pro-Arg-Arg-NH2 (No. 6) is as potent as any cyclic AVP V2 antagonist reported to date. The PaI analogue of No. 6 exhibits promising anti-V2/anti-V1 selectivity. These findings prove conclusively that a ring structure is not a requirement for recognition of or for binding to AVP V2 or V1 receptors. This discovery thus offers a promising new approach to the design of peptide and non-peptide antagonists of AVP and perhaps also to other cyclic peptides such as somatostatin, atrial-natriuretic factor, insulin, and the recently discovered endothelin. Some of these linear antagonists may be of value as pharmacological tools and as therapeutic agents.  相似文献   

4.
To investigate histidine racemization in the synthesis of a LHRH analog, (D-Trp)6-LHRH2-10 was built up by stepwise elongation of the sequence 3-10 using the solid phase technique on a 1% cross-linked chloromethyl polystyrene. For the whole synthesis the tert.-butyloxycarbonyl (BOC) group was used for temporary N-terminal protection. To protect the pi-nitrogen in histidine the benzyl-oxymethyl (BOM) group was utilized. The condensation position in the (D-Trp)6-LHRH analog was chosen so as to be able to investigate the racemization of histidine. We coupled BOC-His(BOM) with the (D-Trp)6-LHRH3-10 fragment using three different activating agents, mixed anhydride, carbonyldiimidazole (1 equiv.)/1-hydroxybenzotriazole (2 equiv.) and dicyclohexylcarbodiimide/1-hydroxybenzotriazole. The racemization was investigated by enzymatic digestion and by HPLC. For HPLC, (D-His(BOM)2-(D-Trp)6-LHRH2-10 was also synthesized. It could be proved that practically no racemization occurs during the actual peptide synthesis. The small amount (1%) of D-histidine found is due to racemization in the synthesis of BOC-His(BOM).  相似文献   

5.
Summary N-Protected dipeptides containing L-3-thia-analogues of phenylalanine, p-nitro-phenylalanine, lysine and leucine respectively were prepared applying an enantioselective enzymatic reaction step. Racemic synthetic intermediates of the type acyl-NH-CH(R1)-CO-D,L-NH-CH(S-R2)-COOBzl were selectively deprotected at the C-terminus by enzymatic hydrolysis using thermitase or trypsin.Abbreviations Ac acetyl - AcOEt ethyl acetate - AcOH acetic acid - Boc tert.-butyloxycarbonyl - Bz benzoyl - Bzl benzyl - DMF dimethyl-formamide - EtOH ethanol - THF tetrahydrofuran - Z benzyloxycarbonyl Dedicated to Prof. D. Cavallini at the occasion of his 75th birthday.  相似文献   

6.
Insulin was modified with d-biotin-N-hydroxysuccinimide ester in dimethylformamide. Mono-, di-, and triacylated insulins were separated by preparative isoelectric focusing. Monoacylated derivatives (isoelectric point 5.1) were fractionated twice on DEAE-cellulose to yield pure N epsilonB29-biotinylinsulin. The structure of the product was established by amino acid analysis before and after deamination. N epsilonB29-biotinylinsulin had biological activity indistinguishable from insulin on glucose oxidation and lipid synthesis assays using isolated rat epididymal fat cells. Complexes of N epsilonB29-biotinylinsulin with avidin, having essentially all but one binding site filled with biotin, were prepared in order to obtain a 1:1 insulin:avidin ration. The elicited identical maximal biological responses, but showed a potency decreased to 5% of that of insulin. Such complexes conjugated with ferritin will provide a useful tool in the development of electron microscopic stains of insulin receptors.  相似文献   

7.
S H Nakagawa  H S Tager 《Biochemistry》1992,31(12):3204-3214
In order to evaluate the cause of the greatly decreased receptor-binding potency of the naturally occurring mutant human insulin Insulin Wakayama ([LeuA3]insulin, 0.2% relative potency), we examined (by the semisynthesis of insulin analogues based on N alpha-PheB1,N epsilon-LysB29-bisacetyl-insulin) the importance of aliphatic side chain structure at positions A2 and A3 (Ile and Val, respectively) in directing the interaction of insulin with its receptor. Analogues bearing glycine, alanine, alpha-amino-n-butyric acid, norvaline, norleucine, valine, isoleucine, allo-isoleucine, threonine, tert-leucine, or leucine at positions A2 or A3 were assayed for their potencies in competing for the binding of 125I-labeled insulin to isolated canine hepatocytes, as were analogues bearing deletions from the A-chain amino terminus or the B-chain carboxyl terminus. Selected analogues were also analyzed by far-UV CD and absorption spectroscopy of Co2+ complexes. Our results identify that (a) Ile and Val serve well at position A2, whereas residues with other side chains (including those with straight chains, alternatively configured beta-branches, or a gamma-branch) exhibit relative receptor-binding potencies in the range 1-5%; (b) greater flexibility is allowed side-chain structure at position A3, with Ile, allo-Ile, alpha-amino-n-butyric acid, and tert-Leu exhibiting relative receptor-binding potencies in the range 11-36%; and (c) simultaneous replacements at positions A2 and A3, and deletions of the COOH-terminal domain of the insulin B chain in related analogues, yield cumulative effects. These findings are discussed with respect to a model for insulin-receptor interactions that involves a structure-orienting role for residue A2, the direct interaction of residue A3 with receptor, and multiple separately defined elements of structure and of conformational adjustment.  相似文献   

8.
A series of 2-substituted dynorphin A-(1-13) amide (Dyn A-(1-13)NH2) analogues was prepared by solid phase peptide synthesis and evaluated for opioid receptor affinities in radioligand binding assays and for opioid activity in the guinea pig ileum (GPI) assay. Amino acid substitution at the 2 position produced marked differences in both opioid receptor affinities and potency in the GPI assay; Ki values for the analogues in the radioligand binding assays and IC50 values in the GPI assay varied over three to four orders of magnitude. The parent peptide, Dyn A-(1-13)NH2, exhibited the greatest affinity and selectivity for kappa receptors and was the most potent peptide examined in the GPI assay. The most important determinant of opioid receptor selectivity and opioid potency for the synthetic analogues was the stereochemistry of the amino acid at the 2 position. Except for [D-Lys2]Dyn A-(1-13)NH2 in the kappa receptor binding assay, the analogues containing a D-amino acid at position 2 were much more potent in all of the assays than their corresponding isomers containing an L-amino acid at this position. The L-amino acid-substituted analogues generally retained some selectivity for kappa opioid receptors. The more potent derivatives with a D-amino acid in position 2, however, preferentially interacted with mu opioid receptors. Introduction of a positively charged amino acid into the 2 position generally decreased opioid receptor affinities and potency in the GPI assay.  相似文献   

9.

Background

Insulin analogues comprising acidic amino acid substitutions at position B10 have previously been shown to display increased mitogenic potencies compared to human insulin and the underlying molecular mechanisms have been subject to much scrutiny and debate. However, B10 is still an attractive position for amino acid substitutions given its important role in hexamer formation. The aim of this study was to investigate the relationships between the receptor binding properties as well as the metabolic and mitogenic potencies of a series of insulin analogues with different amino acid substitutions at position B10 and to identify a B10-substituted insulin analogue without an increased mitogenic to metabolic potency ratio.

Methodology/Principal Findings

A panel of ten singly-substituted B10 insulin analogues with different amino acid side chain characteristics were prepared and insulin receptor (both isoforms) and IGF-I receptor binding affinities using purified receptors, insulin receptor dissociation rates using BHK cells over-expressing the human insulin receptor, metabolic potencies by lipogenesis in isolated rat adipocytes, and mitogenic potencies using two different cell types predominantly expressing either the insulin or the IGF-I receptor were systematically investigated. Only analogues B10D and B10E with significantly increased insulin and IGF-I receptor affinities as well as decreased insulin receptor dissociation rates displayed enhanced mitogenic potencies in both cell types employed. For the remaining analogues with less pronounced changes in receptor affinities and insulin receptor dissociation rates, no apparent correlation between insulin receptor occupancy time and mitogenicity was observed.

Conclusions/Significance

Several B10-substituted insulin analogues devoid of disproportionate increases in mitogenic compared to metabolic potencies were identified. In the present study, receptor binding affinity rather than insulin receptor off-rate appears to be the major determinant of both metabolic and mitogenic potency. Our results also suggest that the increased mitogenic potency is attributable to both insulin and IGF-I receptor activation.  相似文献   

10.
The formation of terminated peptides with free alpha-amino groups has often been observed in stepwise solid phase peptide synthesis. This has been attributed to variable accessibility in regions of the swollen crosslinked resin supports. It is now shown that impurities in the amino acid reagents are responsible for these by-products. Thus, sec.-butyloxycarbonylamino acids were isolated from tert.-butyloxycarbonylamino acids after treatment with trifluoroacetic acid under standard deprotection conditions for the removal of the tert.-butyloxycarbonyl (Boc) group. Direct reverse phase HPLC analysis of Boc-amino acids from commercial sources also showed the sec.-Boc-amino acids as impurities present at varying levels. The sec.-Boc group was stable to treatment at room temperature with trifluoroacetic acid in dichloromethane (1:1, v/v) (half-life 7 years), but was removed by HF-anisole under the standard conditions of cleavage and deprotection of assembled peptides. In model syntheses, the level of terminated free peptides corresponded to the level of preexisting sec.-Boc-amino acid impurities present in the Boc-amino acid reagents. Use of Boc-amino acids with no detectable sec.-Boc resulted in negligible levels (less than 0.05%) of terminated peptides. The problem is thus readily overcome by the use of pure Boc-amino acid starting materials and is not a reflection of a shortcoming inherent to the polymer supported nature of solid phase syntheses as has been previously suggested.  相似文献   

11.
Bile acids have been considered very useful in the preparation of new pharmaceuticals, and more recently in the preparation of peptide and protein drugs because of their natural chemical and biological properties. In this study, we modified recombinant human insulin by covalently attaching deoxycholic acid (DOCA) derivatives in order to synthesize orally active insulin analogues. DOCA derivatives, namely succinimido deoxycholate and succinimido bisdeoxycholyl-L-lysine were prepared and site specifically conjugated at Lys(B29) of insulin. The resultant insulin conjugates, [N(B29)-deoxycholyl] insulin (Ins-DOCA) and [N(B29)-bisdeoxycholyl-L-lysil] insulin (Ins-bisDOCA), were studied for their chemical, structural, and biological properties. Their chemical properties were determined by HPLC, MALDI-TOF mass spectroscopy, and dynamic light scattering. Lipophilicity and self-aggregation behavior of insulin conjugates were enhanced with increasing number of labeled bile acid. The far-ultraviolet region of circular dichroism spectra showed no significant change of the tertiary structure of insulin in aqueous solution due to conjugation. Competitive insulin binding assay with HepG2 cells revealed that monosubstituted insulin conjugates still retained high binding affinity to the insulin receptor. When the insulin conjugates were intravenously administered (0.33 IU/kg) to streptozotocin (STZ)-induced diabetic rats, the conjugates showed sustained biological activity for a longer period with the similar lowest blood glucose level (glucose nadir), compared to native insulin. In further studies, the resulting new insulin conjugates will be investigated for their oral efficiency as a long-acting insulin formulation for the treatment of diabetic patients.  相似文献   

12.
Several analogues of the biologically active fragment of bovine parathyroid hormone (bPTH), based on the sequence of the NH2-terminal 34 amino acids, were prepared by solid phase synthesis and bioassayed in the in vitro adenylyl cyclase assay to provide further information concerning structure-activity relations in parathyroid hormone. In two analogues both methionines of the natural hormone were replaced with the sulfur-free and closely isosteric amino acid norleucine (Nle). The synthetic analogue [Nle-8, Nle-18]bPTH-(1-34) was highly active in the in vitro rat adenylyl cyclase bioassay, thus demonstrating that neither of the methionines, found in the native sequence, is indispensable for biological activity. Tyrosine was substituted for phenylalanine at position 34 in the synthesis of two other hormone analogues, [Try-34]bPTH-(1-34) and [Nle-8,Nle-18,Tyr-34]bPTH-(1-34). Both derivatives were exposed to conventional iodination procedures involving use of the oxidant chloramine T. Although iodination of [Try-34]bPTH-(1-34) resulted in virtually complete loss of biological activity, [Nle-8,Nle-18,Tyr-34]-bPTH-(1-34), which lacks methionine, could be exposed to oxidants and labeled efficiently with iodine with retention of nearly complete biological activity. These findings confirm that the loss of biological activity after oxidation of bPTH, as previously observed with the native hormone, is indeed attributable to the oxidation lability of methionine rather than to any other modifications. This sulfur-free, radioiodinated, biologically active analogue of parathyroid hormone may prove useful in studies of interaction of the hormone with the membrane receptors of target tissues and in studies of the metabolism of parathyroid hormone.  相似文献   

13.
Glucagon-like peptide-1 (GLP-1) stimulates insulin secretion and improves glycemic control in type 2 diabetes. In serum the peptide is degraded by dipeptidyl peptidase IV (DPP IV). The resulting short biological half-time limits the therapeutic use of GLP-1. Therefore, various GLP-1 analogues with alterations in cleavage positions were synthesized. GLP-1-receptor binding was investigated in RINm5F cells. Biological activity of the GLP-1 analogues was investigated in vitro by measuring cAMP production in RINm5F cells. GLP-1 analogues with modifications in position 2 were not cleaved by DPP IV and showed receptor affinity and in vitro biological activity comparable to native GLP-1. Analogues with alterations in positions 2 and 8, 2 and 9 or 8 and 9 showed a significant decrease in receptor affinity and biological activity. In vivo biological activity was tested in pigs. GLP-1 analogues were administered subcutaneously followed by an intravenous bolus injection of glucose. Plasma glucose and insulin were monitored over 4 h. Compared to native GLP-1, analogues with an altered position 2 showed similar or increased potency and biological half-time. Other GLP-1 analogues were less active. Despite the lack of degradation of these GLP-1 analogues by DPP IV in vitro, their biological action is as short as that of GLP-1, except for desamino-GLP-1, indicating that other degradation enzymes are important in vivo. Alterations of GLP-1 in positions 8 or 9 result in a loss of biological activity without extending biological half-time.  相似文献   

14.
The title analogues of corticoptropin-(1--19)-nonadecapeptidamide in which the tryptophan residue in position 9 has been replaced by tert-butylated tryptophan derivatives, were prepared according to the methods of conventional peptide synthesis in solution. Both analogues showed remarkable steroidogenic activity as measured by Sayers test. The unexpectedly high biological potency is discussed.  相似文献   

15.
Syntheses of biotinylated and dethiobiotinylated insulins   总被引:1,自引:0,他引:1  
The 600-MHz proton spectrum of dethiobiotin (prepared from d-biotin with Raney nickel) was measured in order to gain information pertaining to its stereochemical homogeneity. The spectrum demonstrated clearly that the material is a 6:1 mixture of two stereoisomers. The cis compound, corresponding to the stereochemistry of d-biotin, is the major isomer. Two biotinyl- and two dethiobiotinylinsulins were prepared in which the distance between the biotins and insulin was varied by interposition of spacer arms. The synthesis of these compounds involved repeated N-hydroxysuccinimido ester condensations. Biotin N-hydroxysuccinimido ester, dethiobiotin N-hydroxysuccinimido ester, 6-aminohexanoic acid, and N-[3-[(3-aminopropyl)carboxyamino]-propyl]succinamic acid N-tert-butyl ester served as the building blocks for the spacers. The latter compound was prepared from N-[3-[(3-aminopropyl)amino]propyl]succinamic acid sulfate by the use of a selective amino-protecting method based on the differential stability toward acid of citraconyl and tert-butoxycarbonyl amino-protecting groups. The structure of N-[3-[(3-aminopropyl)amino]propyl]succinamic acid sulfate was established unequivocally by X-ray diffraction. The attachment of the biotinylated spacers to the insulin was exclusively at the N alpha, B1 position. Homogeneity of the final products as well as of the intermediates used in their synthesis was established by thin-layer chromatography, by high-pressure liquid chromatography, and in most instances by elemental analysis. The ratio of 6-aminohexanoic acid to lysine in hydrolysates of the insulin derivatives was in agreement with theory. The insulin derivatives were required for a study on the effect of avidin on their ability to interact with insulin receptors on rat epididymal adipocytes, which is described in the accompanying paper.  相似文献   

16.
Possibilities and limitations of chemoenzymatic synthesis of novel structural analogues of an antiviral preparation of Ribavirin (1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide) were established. A synthesis of various amides of 1H-1,2,4-triazole-3-carboxylic acid and its 5-substituted analogues—potential substrates of purine nucleoside phosphorylase—has been described. Comparative efficiency of preparation methods of these amides, as well as the methods of introduction of functional groups to the C5 position of heterocyclic system, were investigated. Novel analogues of Ribavirin containing various substitutes in the carboxamide group were synthesized. A biotechnological method was developed for the preparation of 1-β-D-ribofuranozyl-1,2,4-triazole-3-carbonitryl, an intermediate in the synthesis of Viramidine, the modern analogue of Ribavirin.  相似文献   

17.
本文采用液相多肽合成法制备了八肽胆囊收缩素(CCK_8)的六种类似物,并测定了它们诱导离体的豚鼠胆囊收缩的生物学活性。发现CCK_8的N-端乙酰化不改变其生物活性,脱去N-端氨基的CCK_8类似物即Suc-CCK_7与母体CCK_8相比,其活性明显增加。在Boc-CCK_7中,Met被NIe取代活性可完全保留,Gly~(29)被D-Ala取代后仍保留相当的活性,但Gly~(29)被β-Ala取代后则失去胆囊收缩活性;在Met~(28)-Gly~(29)区域引入刚性的r-内酰胺环作为构象限制,也导致活性完全丧失。  相似文献   

18.
Substitution of A1-glycine of insulin by L-amino acids yields in analogues with low biological activity. With D-amino acids in A1 biological activity is essentially retained. Synthesis of [A1-L-tryptophan]- and [A1-D-tryptophan]-insulin should provide information about the position of the side chains of L- and D-amino acids relative to A19-tyrosine, e.g. by evaluation of intramolecular resonance energy transfer between the fluorescent side chains. [A1-D-Tryptophan]-insulin exhibits full biological activity.  相似文献   

19.
The protected peptide, Ac-Glu(OBut)-D-Phe-D-Trp-Ser(But)-Tyr(But)-D-Lys (Z)-Leu-Arg(Tos)-Pro-Gly-NH2 was synthesized in a stepwise manner on a resin of poly-N-acrylylpyrrolidine using both acid cleavable N alpha-tert.-butyloxycarbonyl and base cleavable N alpha-fluorenylmethyloxycarbonyl protecting groups. After cleavage by ammonolysis in methanol, the tert.-butyl and benzyloxy-carbonyl side-chain protecting groups were cleaved with CF3-CO2H-thioanisole and the 1-6 amide ring formed by cyclization with diphenylphosphorylazide, after which the remaining tosyl protecting group was cleaved in HF-anisole. [1,6-Cyclo(Ac-Glu1, D-Phe2, D-Trp3, D-Lys6]LH-RH exhibited less than 10% of the antiovulatory potency of [D less than Glu1, D-Phe2, D-Trp3,6] LH-RH, a potent linear antagonist.  相似文献   

20.
The influence of P1,P3-bis(5'-adenosyl)triphosphate (Ap3A), P1,P4-bis(5'-adenosyl)tetraphosphate (Ap4A) and its analogues, containing a residue of methylenediphosphonic acid in various positions of the oligophosphate chain, on the reactions catalysed by phenylalanyl-tRNA synthetase from E. coli MRE-600 has been studied. The compounds do not affect significantly the rate of ATP-[32P]PPi-exchange nor maintain this reaction in the absence of ATP. The diadenosineoligophosphates are shown to be noncompetitive inhibitors of ATP in the tRNA aminoacylation by phenylalanine (for Ap4A Ki = 1,45.10(-3) M). The phosphonate analogues of Ap4A inhibit the synthesis of Ap3A depending on their structure. The conclusion is thus drawn that the E. coli MRE-600 phenylalanyl-tRNA synthetase does not interact property with Ap4A and its phosphonate analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号