首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzymes aldehyde oxidase and xanthine oxidase catalyze the oxidation of a wide range of N-heterocycles and aldehydes. These enzymes are widely known for their role in the metabolism of N-heterocyclic xenobiotics where they provide a protective barrier by aiding in the detoxification of ingested nitrogen-containing heterocycles. Isovanillin has been shown to inhibit the metabolism of aromatic aldehydes by aldehyde oxidase, but its inhibition towards the heterocyclic compounds has not been studied. The present investigation examines the oxidation of phthalazine in the absence and in the presence of the inhibitor isovanillin by partially purified aldehyde oxidase from guinea pig liver. In addition, the interaction of phthalazine with freshly prepared guinea pig liver slices, both in the absence and presence of specific inhibitors of several liver oxidizing enzymes, was investigated. ldehyde oxidase rapidly converted phthalazine into 1-phthalazinone, which was completely inhibited in the presence of isovanillin (a specific inhibitor of aldehyde oxidase). In freshly prepared liver slices, phthalazine was also rapidly converted to 1-phthalazinone. The formation of 1-phthalazinone was completely inhibited by isovanillin, whereas disulfiram (a specific inhibitor of aldehyde dehydrogenase) only inhibited 1-phthalazinone formation by 24% and allopurinol (a specific inhibitor of xanthine oxidase) had little effect. Therefore, isovanillin has been proved as an inhibitor of the metabolism of heterocyclic substrates, such as phthalazine, by guinea pig liver aldehyde oxidase, since it had not been tested before. Thus it would appear from the inhibitor results that aldehyde oxidase is the predominant enzyme in the oxidation of phthalazine to 1-phthalazinone in freshly prepared guinea pig liver slices, whereas xanthine oxidase only contributes to a small extent and aldehyde dehydrogenase does not take any part.  相似文献   

2.
BACKGROUND/AIMS: The oxidation of xenobiotic-derived aromatic aldehydes with freshly prepared liver slices has not been previously reported. The present investigation compares the relative contribution of aldehyde oxidase, xanthine oxidase and aldehyde dehydrogenase activities in the oxidation of vanillin, isovanillin and protocatechuic aldehyde with freshly prepared liver slices. METHODS: Vanillin, isovanillin or protocatechuic aldehyde was incubated with liver slices in the presence/absence of specific inhibitors of each enzyme, followed by HPLC. RESULTS: Vanillin was rapidly converted to vanillic acid. Vanillic acid formation was completely inhibited by isovanillin (aldehyde oxidase inhibitor), whereas disulfiram (aldehyde dehydrogenase inhibitor) inhibited acid formation by 16% and allopurinol (xanthine oxidase inhibitor) had no effect. Isovanillin was rapidly converted to isovanillic acid. The formation of isovanillic acid was not altered by allopurinol, but considerably inhibited by disulfiram. Protocatechuic aldehyde was converted to protocatechuic acid at a lower rate than that of vanillin or isovanillin. Allopurinol only slightly inhibited protocatechuic aldehyde oxidation, isovanillin had little effect, whereas disulfiram inhibited protocatechuic acid formation by 50%. CONCLUSIONS: In freshly prepared liver slices, vanillin is rapidly oxidized by aldehyde oxidase with little contribution from xanthine oxidase or aldehyde dehydrogenase. Isovanillin is not a substrate for aldehyde oxidase and therefore it is metabolized to isovanillic acid predominantly by aldehyde dehydrogenase. All three enzymes contribute to the oxidation of protocatechuic aldehyde to its acid.  相似文献   

3.
4.
The existence of the pyruvate kinase (PK) in pig liver mitochondria was shown by monitoring photometrically the PK reaction in solubilised mitochondria with either phosphoenolpyruvate (PEP) or ADP used as a substrate. In distinction with the cytosolic isoenzyme, the mitochondrial PK showed a sigmoidal dependence on either PEP or ADP concentrations. The occurrence of the mitochondrial PK was confirmed by immunological analysis. Titration with digitonin showed that mPK is restricted to the matrix. PEP addition to mitochondria resulted in reduction of the intramitochondrial NAD(P)+ inhibited by either the non-penetrant thiol reagent mersalyl or by arsenite, an inhibitor of the pyruvate dehydrogenase complex. Citrate/oxaloacetate appearance outside mitochondria also occurred as result of PEP addition to PLM. Taken together these findings support a role for PEP itself in triggering fatty acid synthesis via its mitochondrial metabolism.  相似文献   

5.
猪肝酯酶研究进展   总被引:2,自引:0,他引:2  
猪肝酯酶是手性合成中重要的水解酶,对它的生化特性研究较早。近几年猪肝酯酶的基因克隆研究也取得了较大进展。重组酶具有选择特异性更高的特点,与生化提取方法相比成本较低廉。基因工程技术的开展使猪肝酯酶在化学工业、生物制药及相关领域中有了更加广泛的应用前景.  相似文献   

6.
Food anticipatory activity (FAA) is an output of the food-entrained oscillator (FEO), a conspicuous biological clock that expresses when experimental animals are under a restricted food schedule (RFS). We have shown that the liver is entrained by RFS and exhibits an anticipatory response before meal time in its oxidative and energetic state. The present study was designed to determine the mitochondrial oxidative and phosphorylating capacity in the liver of rats under RFS to further support the biochemical anticipatory role that this organ plays during the food entrainment (9). Metabolic and functional parameters of liver mitochondria were characterized before (0800 h), during (1100 h), and after (1400 h) FAA. The main results were as follows. First, there was an enhancement during FAA (1100 h) in 1) oxidative capacity (site I of the electron transport chain), 2) phosphorylating ability (estimated by ATP synthesis), and 3) activities of NADH shuttles. Second, after rats were fed (1400 h), the phosphorylating capacity remained high, but this was not the case for the respiratory control ratio for site I. Finally, in the three experimental conditions before, during, and after FAA, an increment was detected in the H(+) electrochemical potential, due to an elevation in mitochondrial membrane potential, and in mitochondrial yield. Most of the changes in mitochondrial properties related to RFS were also present when results were compared with those from the 24-h fasted group. In conclusion, the results support the notion that a distinctive rheostatic state is installed in the metabolic activity of the liver when FEO is being expressed.  相似文献   

7.
8.
9.
10.
11.
12.
Bile salt sulfotransferase from guinea pig liver is purified by the procedures of ammonium sulfate fractionation, Sephadex G-100 column chromatography, agarose-hexane-adenosine 3′,5′-diphosphate affinity chromatography and polyacrylamide gel electrophoresis. The purified enzyme exhibits a pH optimum of 6.8, an isoelectric point of 5.6 and a molecular weight of 7600 estimated by gel filtration technique. The apparent Km values of the enzyme are 7.7·10?5 M for taurolithocholate and 1.4·10?6 M for 3′-phosphoadenosine 5′-phosphosulfate. It requires Mg2+ and free sulfohydryl group(s) for activity. The enzyme reacts with hydroxy groups of bile salts at both 3α and 3β positions. No activity is found in the kidney of guinea pig. The purified enzyme does not react with estrone, estradiol, testosterone, dehydroepiandrosterone, cholesterol, phenol, tyramine, and serotonin. The results indicate that bile salt sulfotransferase is distinct from other hepatic sulfotransferases.  相似文献   

13.
Glucose metabolism and changes in plasma insulin, glucagon and catecholamines were studied in unfed newborn pigs during acute cold exposure immediately after birth. When newborn pigs are exposed to a moderate cold external temperature (20 degrees C), they exhibit a transient thermoregulatory response characterized by an increased liver glycogenolysis, an enhanced blood glucose clearance rate (+35%) and a rise in plasma catecholamine concentrations. When the newborn pigs are exposed to a cold external temperature (12 degrees C), they become rapidly (10-12 h after birth) hypothermic and hyperglycaemic. This results from a fall in blood glucose clearance rate (-40%). Muscle glycogenolysis is low in normothermic animals during the 12 h following birth. Muscle glycogenolysis increases after a delay of 6 h in animals exposed to an external temperature of 20 degrees C or 12 degrees C. These data demonstrate that the failure in the thermoregulatory response in the newborn pig exposed to a cold temperature is not the consequence of a lack of mobilization of energy stores, but results from a defect in glucose utilization.  相似文献   

14.
15.
16.
17.
Sialic acids from the liver and serum of guinea-pig are composed of N-acetylneuraminic acid (Neu5Ac; 85% and 61%, respectively), N-acetyl-4-O-acetylneuraminic acid (Neu4,5Ac2; 10% and 32%, respectively) and N-glycolylneuraminic acid (Neu5Gc; 5% and 7%, respectively), besides traces of N-glycolyl-4-O-acetylneuraminic acid in serum. The analysis was carried out using thin-layer chromatography, high-performance liquid chromatography, electron impact ionization mass spectrometry, and different enzymes (sialidase, sialate esterase, and sialate-pyruvate lyase after hydrolysis and purification of the sialic acids by ion-exchange chromatography). We showed that this O-acetylation of sialic acids is due to the activity of an acetyl-coenzyme A:sialate-4-O-acetyltransferase (EC 2.3.1.44), which occurs together with sialyltransferase activity in Golgi-enriched membrane fractions of guinea-pig liver. The enzyme operates optimally at 30°C in 70 mM potassium phosphate buffer at pH 6.7 and in the presence of 90 mM KCl with an apparent KM for AcCoA of 0.6 1M and a Vmax of 20 pmol/mg protein x min. The enzyme is inhibited by coenzyme A in a mixed-competitive manner (Ki = 4.2 M), as well as by para-chloromercuribenzoate, MnCl2, saponin and Triton X-100.  相似文献   

18.
19.
The quaternary structure of phosphofructokinase from pig liver has been studied by electron microscopy. Particles ranging in size from tetramers to long flexible chains of tetramers were commonly observed. Phosphofructokinase tetramers are square planar and approximately 110 A on a side; individual subunits are roughly spherical, with a mean radius of 28 A. Chains are formed by end-to-end association of tetramers rather than by tetramer stacking. The geometry of association implies that phosphofructokinase tetramers possess D2 symmetry, with distinct isologous bonding domains for dimer, tetramer, and chain formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号