首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We evaluated the role of IL-1 during Pseudomonas aeruginosa bacteremia by intravenously injecting P. aeruginosa strain D4 into IL-1-deficient and WT mice. The two strains showed equivalent mortality rates. However, when the mice were pretreated with cyclophosphamide, bacteremia-induced mortality was significantly greater in the IL-1-deficient mice than in the WT mice ( P < 0.01). We then investigated the role of neutrophils and macrophages in protecting IL-1-deficient mice from bacteremia by administering anti-Gr-1 antibody or liposomes containing dichloromethylene diphosphonate, respectively. After P. aeruginosa inoculation survival was significantly lower in the macrophage-depleted IL-1-deficient mice than in the WT mice. In contrast, neutrophil depletion did not have this effect. Compared to the macrophage-depleted WT mice, the macrophage-depleted IL-1-deficient bacteremic mice had higher bacterial counts in various organs 48 and 72 hr post-infection. They also had lower TNF-α, IL-6, and INF-γ concentrations in their livers during the early phase of sepsis. Thus, IL-1 deficiency becomes disadvantageous during P. aeruginosa bacteremia when it is accompanied by immunosuppression, particularly when macrophage functions are seriously impaired.  相似文献   

2.
The present study was conducted to critically determine the protective role of IL-18 in host response to Mycobacterium tuberculosis infection. IL-18-deficient (knockout (KO)) mice were slightly more prone to this infection than wild-type (WT) mice. Sensitivity of IL-12p40KO mice was lower than that of IL-12p40/IL-18 double KO mice. IFN-gamma production caused by the infection was significantly attenuated in IL-18KO mice compared with WT mice, as indicated by reduction in the levels of this cytokine in sera, spleen, lung, and liver, and its synthesis by spleen cells restimulated with purified protein derivatives. Serum IL-12p40 level postinfection and its production by peritoneal exudate cells stimulated with live bacilli were also significantly lower in IL-18KO mice than WT mice, suggesting that attenuated production of IFN-gamma was secondary to reduction of IL-12 synthesis. However, this was not likely the case, because administration of excess IL-12 did not restore the reduced IFN-gamma production in IL-18KO mice. In further studies, IL-18 transgenic mice were more resistant to the infection than control littermate mice, and serum IFN-gamma level and its production by restimulated spleen cells were increased in the former mice. Taken together, our results indicate that IL-18 plays an important role in Th1 response and host defense against M. tuberculosis infection although the contribution was not as profound as that of IL-12p40.  相似文献   

3.
4.
Interleukin (IL)-10 is an anti-inflammatory cytokine that modulates sepsis by decreasing pro-inflammatory cytokine production and chemokine expression. In this study, IL-10-deficient and wild-type (WT) mice were infected with Corynebacterium kutscheri to determine if the absence of IL-10 altered the protective immunity and pathogenesis. After infection, IL-10 knockout (KO) mice had a higher survival rate than WT mice. The decrease of body weight and the increased weight of organs such as liver and spleen were greater in WT mice. Bacterial counts were significantly increased after inoculation in WT mice over those in IL-10 KO mice. WT mice had more granulomatous inflammation and coagulative necrosis in the liver and spleen, lymphocyte depletion in lymphoid follicles, and apoptosis of immune cells in the spleen. WT mice had significantly higher plasma concentrations of aspartate aminotransferase and alanine aminotransferase. Furthermore, more upregulation of tumor necrosis factor-α and IL-4 in the plasma, macrophage inflammatory protein-2, keratinocyte-derived chemokine, inducible nitric oxide synthase, and interferon-inducible protein 10 mRNA in the spleen were observed in WT mice after inoculation. These results suggest that the lack of IL-10 contributes to an increase in the systemic clearance of C. kutscheri, and that IL-10 plays a detrimental role in controlling systemic C. kutscheri infection.  相似文献   

5.
The authors evaluated the synergistic effect of tumour necrosis factor (TNF) and interleukin 1 (IL-1) in gut-derived sepsis in mice. After colonization of Pseudomonas aeruginosa strain D4 in the gastrointestinal tract, cyclophosphamide was administered to induce bacterial translocation of the P. aeruginosa and thereby to cause gut-derived sepsis. In this model, treatment either with 8 microg/kg of recombinant human TNF-alpha (rhTNF-alpha) or 2 microg/kg of recombinant human interleukin 1alpha (rhIL-1alpha) solely did not affect the mortality, whereas combined administration of the same doses of rhTNF-alpha and rhIL-1alpha significantly increased the mortality rate in comparison with saline-treated mice. Bacterial counts in liver and blood were significantly higher in rhTNF-alpha and rhIL-1alpha treated mice than in saline-treated mice. Endogenous TNF-alpha and IL-1beta productions were stimulated after combined treatment with rhTNF-alpha and rhIL-1alpha. On the contrary to these adverse effects, combined treatment with 500 microg/kg of rhTNF-alpha and 50 microg/kg of rhIL-1alpha on the day before the administration of cyclophosphamide significantly reduced the mortality from septic infection. We conclude that TNF and IL-1 synergistically affect the mortality of mice after gut-derived sepsis due to P. aeruginosa in mice and the timing of treatment with these cytokines causes both extremes in their effects.  相似文献   

6.
CCR1 has previously been shown to play important roles in leukocyte trafficking, pathogen clearance, and the type 1/type 2 cytokine balance, although very little is known about its role in the host response during sepsis. In a cecal ligation and puncture model of septic peritonitis, CCR1-deficient (CCR1(-/-)) mice were significantly protected from the lethal effects of sepsis when compared with wild-type (WT) controls. The peritoneal and systemic cytokine profile in CCR1(-/-) mice was characterized by a robust, but short-lived and regulated antibacterial response. CCR1 expression was not required for leukocyte recruitment, suggesting critical differences extant in the activation of WT and CCR1(-/-) resident or recruited peritoneal cells during sepsis. Peritoneal macrophages isolated from naive CCR1(-/-) mice clearly demonstrated enhanced cytokine/chemokine generation and antibacterial responses compared with similarly treated WT macrophages. CCR1 and CCL5 interactions markedly altered the inflammatory response in vivo and in vitro. Administration of CCL5 increased sepsis-induced lethality in WT mice, whereas neutralization of CCL5 improved survival. CCL5 acted in a CCR1-dependent manner to augment production of IFN-gamma and MIP-2 to damaging levels. These data illustrate that the interaction between CCR1 and CCL5 modulates the innate immune response during sepsis, and both represent potential targets for therapeutic intervention.  相似文献   

7.
IL-23, a heterodimeric cytokine composed of the p40 subunit of IL-12 and a novel p19 subunit, has been shown to be a key player in models of autoimmune chronic inflammation. To investigate the role of IL-23 in host resistance during chronic fungal infection, wild-type, IL-12- (IL-12p35-/-), IL-23- (IL-23p19-/-), and IL-12/IL-23- (p40-deficient) deficient mice on a C57BL/6 background were infected with Cryptococcus neoformans. Following infection, p40-deficient mice demonstrated higher mortality than IL-12p35-/- mice. Reconstitution of p40-deficient mice with rIL-23 prolonged their survival to levels similar to IL-12p35-/- mice. IL-23p19-/- mice showed a moderately reduced survival time and delayed fungal clearance in the liver. Although IFN-gamma production was similar in wild-type and IL-23p19-/- mice, production of IL-17 was strongly impaired in the latter. IL-23p19-/- mice produced fewer hepatic granulomata relative to organ burden and showed defective recruitment of mononuclear cells to the brain. Moreover, activation of microglia cells and expression of IL-1beta, IL-6, and MCP-1 in the brain was impaired. These results show that IL-23 complements the more dominant role of IL-12 in protection against a chronic fungal infection by an enhanced inflammatory cell response and distinct cytokine regulation.  相似文献   

8.
Listeria monocytogenes (LM) infection induces pyroptosis, a form of regulated necrosis, in host macrophages via inflammasome activation. Here, we examined the role of Mint3 in macrophages, which promotes glycolysis via hypoxia-inducible factor-1 activation, during the initiation of pyroptosis following LM infection. Our results showed that Mint3-deficient mice were more resistant to lethal listeriosis than wild-type (WT) mice. Additionally, the mutant mice showed higher levels of IL-1β/IL-18 in the peritoneal fluid during LM infection than WT mice. Moreover, ablation of Mint3 markedly increased the activation of caspase-1, maturation of gasdermin D, and pyroptosis in macrophages infected with LM in vitro, suggesting that Mint3 depletion promotes pyroptosis. Further analyses revealed that Mint3 depletion upregulates inflammasome assembly preceding pyroptosis via glycolysis reduction and reactive oxygen species production. Pharmacological inhibition of glycolysis conferred resistance to listeriosis in a Mint3-dependent manner. Moreover, Mint3-deficient mice treated with the caspase-1 inhibitor VX-765 were as susceptible to LM infection as WT mice. Taken together, these results suggest that Mint3 depletion promotes pyroptosis in host macrophages, thereby preventing the spread of LM infection. Mint3 may serve as a target for treating severe listeriosis by inducing pyroptosis in LM-infected macrophages.Subject terms: Cell death, Infection  相似文献   

9.
Mitogen-activated protein kinase-activated protein kinase 2 (MK2) is one of several kinases activated through direct phosphorylation by p38 mitogen-activated protein kinase. MK2 regulates LPS-induced TNF mRNA translation, and targeted mutation of the MK2 gene renders mice more resistant to D-galactosamine plus LPS-induced liver damage. In the present study, we investigated the role of MK2 in immune defense against Listeria monocytogenes infection. MK2-deficient mice displayed diminished resistance to L. monocytogenes due to impaired control of bacterial growth. The increase in bacterial load in MK2(-/-) mice was associated with normal levels of IL-1 beta, IL-6, and IFN-gamma, whereas TNF production was strongly attenuated. In line, MK2-deficient bone marrow-derived macrophages showed impaired release of TNF, but not of IL-1 beta, in response to various bacterial stimuli in addition to decreased phagocytosis of fluorescence-labeled bacteria. Furthermore, spleen cells from MK2(-/-) mice displayed diminished IFN-gamma synthesis after stimulation with L. monocytogenes. In contrast, MK2 deficiency had no effect on macrophage generation of NO or on oxidative burst activity in response to L. moocytogenes. These results indicate an essential role of MK2 in host defense against intracellular bacteria probably via regulation of TNF and IFN-gamma production required for activation of antibacterial effector mechanisms.  相似文献   

10.
Leishmania (L.) major is a protozoan parasite that infects mammalian hosts and causes a spectrum of disease manifestations that is strongly associated with the genetic background of the host. Interleukin (IL)-6 is an acute phase proinflammatory cytokine, known in vitro to be involved in the inhibition of the generation of regulatory T cells. IL-6-deficient mice were infected with L. major, and T cell and monocyte subsets were analyzed with flow cytometry. Our data show that at the site of infection in the footpad and in the draining popliteal lymph node, numbers of regulatory T cells remain unchanged between WT and IL-6-deficient mice. However, the spleens of IL-6−/− mice contained fewer regulatory T cells after infection with L. major. The development of cutaneous lesions is similar between WT and IL-6-deficient mice, while parasite burden in IL-6−/− mice is reduced compared to WT. The development of IFN-γ or IL-10 producing T cells is similar in IL-6−/− mice. Despite a comparable adaptive T cell response, IL-6-deficient mice develop an earlier peak of some inflammatory cytokines than WT mice. This data indicate that the role of IL-6 in the differentiation of regulatory T cells is complex in vivo, and the effect of an absence of this cytokine can be counter-intuitive.  相似文献   

11.
Sepsis is a systemic inflammatory response resulting from local infection due, at least in part, to impaired neutrophil migration. IL-12 and IL-18 play an important role in neutrophil migration. We have investigated the mechanism and relative role of IL-12 and IL-18 in polymicrobial sepsis induced by cecal ligation and puncture (CLP) in mice. Wild-type (WT) and IL-18(-/-) mice were resistant to sublethal CLP (SL-CLP) sepsis. In contrast, IL-12(-/-) mice were susceptible to SL-CLP sepsis with high bacteria load in peritoneal cavity and systemic inflammation (serum TNF-alpha and lung neutrophil infiltration). The magnitude of these events was similar to those observed in WT mice with lethal CLP sepsis. The inability of IL-12(-/-) mice to restrict the infection was not due to impairment of neutrophil migration, but correlated with decrease of phagocytosis, NO production, and microbicidal activities of their neutrophils, and with reduction of systemic IFN-gamma synthesis. Consistent with this observation, IFN-gamma(-/-) mice were as susceptible to SL-CLP as IL-12(-/-) mice. Moreover, addition of IFN-gamma to cultures of neutrophils from IL-12(-/-) mice restored their phagocytic, microbicidal activities and NO production. Mortality of IL-12(-/-) mice to SL-CLP was prevented by treatment with IFN-gamma. Thus we show that IL-12, but not IL-18, is critical to an efficient host defense in polymicrobial sepsis. IL-12 acts through induction of IFN-gamma and stimulation of phagocytic and microbicidal activities of neutrophils, rather than neutrophil migration per se. Our data therefore provide further insight into the defense mechanism against this critical area of infectious disease.  相似文献   

12.
In the murine model of Cryptococcus neoformans infection Th1 (IL-12/IFN-gamma) and Th17 (IL-23/IL-17) responses are associated with protection, whereas an IL-4-dependent Th2 response exacerbates disease. To investigate the role of the Th2 cytokine IL-13 during pulmonary infection with C. neoformans, IL-13-overexpressing transgenic (IL-13Tg(+)), IL-13-deficient (IL-13(-/-)), and wild-type (WT) mice were infected intranasally. Susceptibility to C. neoformans infection was found when IL-13 was induced in WT mice or overproduced in IL-13Tg(+) mice. Infected IL-13Tg(+) mice had a reduced survival time and higher pulmonary fungal load as compared with WT mice. In contrast, infected IL-13(-/-) mice were resistant and 89% of these mice survived the entire period of the experiment. Ag-specific production of IL-13 by susceptible WT and IL-13Tg(+) mice was associated with a significant type 2 cytokine shift but only minor changes in IFN-gamma production. Consistent with enhanced type 2 cytokine production, high levels of serum IgE and low ratios of serum IgG2a/IgG1 were detected in susceptible WT and IL-13Tg(+) mice. Interestingly, expression of IL-13 by susceptible WT and IL-13Tg(+) mice was associated with reduced IL-17 production. IL-13 was found to induce formation of alternatively activated macrophages expressing arginase-1, macrophage mannose receptor (CD206), and YM1. In addition, IL-13 production led to lung eosinophilia, goblet cell metaplasia and elevated mucus production, and enhanced airway hyperreactivity. This indicates that IL-13 contributes to fatal allergic inflammation during C. neoformans infection.  相似文献   

13.
MAPK activity is negatively regulated by members of the dual specificity phosphatase (Dusp) family, which differ in expression, substrate specificity, and subcellular localization. Here, we investigated the function of Dusp16/MKP-7 in the innate immune system. The Dusp16 isoforms A1 and B1 were inducibly expressed in macrophages and dendritic cells following Toll-like receptor stimulation. A gene trap approach was used to generate Dusp16-deficient mice. Homozygous Dusp16tp/tp mice developed without gross abnormalities but died perinatally. Fetal liver cells from Dusp16tp/tp embryos efficiently reconstituted the lymphoid and myeloid compartments with Dusp16-deficient hematopoietic cells. However, GM-CSF-induced proliferation of bone marrow progenitors in vitro was impaired in the absence of Dusp16. In vivo challenge with Escherichia coli LPS triggered higher production of IL-12p40 in mice with a Dusp16-deficient immune system. In vitro, Dusp16-deficient macrophages, but not dendritic cells, selectively overexpressed a subset of TLR-induced genes, including the cytokine IL-12. Dusp16-deficient fibroblasts showed enhanced activation of p38 and JNK MAPKs. In macrophages, pharmacological inhibition and siRNA knockdown of JNK1/2 normalized IL-12p40 secretion. Production of IL-10 and its inhibitory effect on IL-12 production were unaltered in Dusp16tp/tp macrophages. Altogether, the Dusp16 gene trap mouse model identifies an essential role in perinatal survival and reveals selective control of differentiation and cytokine production of myeloid cells by the MAPK phosphatase Dusp16.  相似文献   

14.
Pseudomonas aeruginosa is a Gram-negative pathogen that causes severe infections in immunocompromised individuals and individuals with cystic fibrosis or chronic obstructive pulmonary disease (COPD). Here we show that kinase suppressor of Ras-1 (Ksr1)-deficient mice are highly susceptible to pulmonary P. aeruginosa infection accompanied by uncontrolled pulmonary cytokine release, sepsis and death, whereas wild-type mice clear the infection. Ksr1 recruits and assembles inducible nitric oxide (NO) synthase (iNOS) and heat shock protein-90 (Hsp90) to enhance iNOS activity and to release NO upon infection. Ksr1 deficiency prevents lung alveolar macrophages and neutrophils from activating iNOS, producing NO and killing bacteria. Restoring NO production restores the bactericidal capability of Ksr1-deficient lung alveolar macrophages and neutrophils and rescues Ksr1-deficient mice from P. aeruginosa infection. Our findings suggest that Ksr1 functions as a previously unknown scaffold that enhances iNOS activity and is therefore crucial for the pulmonary response to P. aeruginosa infections.  相似文献   

15.
Adenosine is a biologically active molecule that is formed at sites of metabolic stress associated with trauma and inflammation, and its systemic level reaches high concentrations in sepsis. We have recently shown that inactivation of A2A adenosine receptors decreases bacterial burden as well as IL-10, IL-6, and MIP-2 production in mice that were made septic by cecal ligation and puncture (CLP). Macrophages are important in both elimination of pathogens and cytokine production in sepsis. Therefore, in the present study, we questioned whether macrophages are responsible for the decreased bacterial load and cytokine production in A2A receptor-inactivated septic mice. We showed that A2A KO and WT peritoneal macrophages obtained from septic animals were equally effective in phagocytosing opsonized E. coli. IL-10 production induced by opsonized E. coli was decreased in macrophages obtained from septic A2A KO mice as compared to WT counterparts. In contrast, the release of IL-6 and MIP-2 induced by opsonized E. coli was higher in septic A2A KO macrophages than WT macrophages. These results suggest that peritoneal macrophages are not responsible for the decreased bacterial load and diminished MIP-2 and IL-6 production that are observed in septic A2A KO mice. In contrast, peritoneal macrophages may contribute to the suppressive effect of A2A receptor inactivation on IL-10 production during sepsis.  相似文献   

16.
Cecal ligation and puncture (CLP) caused septic peritonitis in wild-type (WT) mice, with approximately 33% mortality within 7 days after the procedure. Concomitantly, the protein level of intraperitoneal CX3CL1/fractalkine was increased, with infiltration by CX3CR1-expressing macrophages into the peritoneum. CLP induced 75% mortality in CX3CR1-deficient (CX3CR1(-/-)) mice, which, however, exhibited a similar degree of intraperitoneal leukocyte infiltration as WT mice. Despite this, CX3CR1(-/-) mice exhibited impairment in intraperitoneal bacterial clearance, together with a reduction in the expression of intraperitoneal inducible NO synthase (iNOS) and bactericidal proinflammatory cytokines, including IL-1beta, TNF-alpha, IFN-gamma, and IL-12, compared with WT mice. Bactericidal ability of peritoneal phagocytes such as neutrophils and macrophages was consistently attenuated in CX3CR1(-/-) mice compared with WT mice. Moreover, when WT macrophages were stimulated in vitro with CX3CL1, their bactericidal activity was augmented in a dose-dependent manner, with enhanced iNOS gene expression and subsequent NO generation. Furthermore, CX3CL1 enhanced the gene expression of IL-1beta, TNF-alpha, IFN-gamma, and IL-12 by WT macrophages with NF-kappaB activation. Thus, CX3CL1-CX3CR1 interaction is crucial for optimal host defense against bacterial infection by activating bacterial killing functions of phagocytes, and by augmenting iNOS-mediated NO generation and bactericidal proinflammatory cytokine production mainly through the NF-kappaB signal pathway, with few effects on macrophage infiltration.  相似文献   

17.
Bcl-3 is an atypical member of the IκB family that has the potential to positively or negatively modulate nuclear NF-κB activity in a context-dependent manner. Bcl-3's biologic impact is complex and includes roles in tumorigenesis and diverse immune responses, including innate immunity. Bcl-3 may mediate LPS tolerance, suppressing cytokine production, but it also seems to contribute to defense against select systemic bacterial challenges. However, the potential role of Bcl-3 in organ-specific host defense against bacteria has not been addressed. In this study, we investigated the relevance of Bcl-3 in a lung challenge with the Gram-negative pathogen Klebsiella pneumoniae. In contrast to wild-type mice, Bcl-3-deficient mice exhibited significantly increased susceptibility toward K. pneumoniae pneumonia. The mutant mice showed increased lung damage marked by neutrophilic alveolar consolidation, and they failed to clear bacteria in lungs, which correlated with increased bacteremic dissemination. Loss of Bcl-3 incurred a dramatic cytokine imbalance in the lungs, which was characterized by higher levels of IL-10 and a near total absence of IFN-γ. Moreover, Bcl-3-deficient mice displayed increased lung production of the neutrophil-attracting chemokines CXCL-1 and CXCL-2. Alveolar macrophages and neutrophils are important to antibacterial lung defense. In vitro stimulation of Bcl-3-deficient alveolar macrophages with LPS or heat-killed K. pneumoniae recapitulated the increase in IL-10 production, and Bcl-3-deficient neutrophils were impaired in intracellular bacterial killing. These findings suggest that Bcl-3 is critically involved in lung defense against Gram-negative bacteria, modulating functions of several cells to facilitate efficient clearance of bacteria.  相似文献   

18.
Toll-IL-1R domain-containing adaptor-inducing IFN-beta (TRIF) is an adaptor molecule that mediates a distinct TLR signaling pathway. Roles of TRIF in the host defense have been primarily associated with virus infections owing to the induction of IFN-alphabeta. In this study, we investigated a role of TRIF in Pseudomonas aeruginosa infection. In vitro, TRIF-deficient mouse alveolar and peritoneal macrophages showed a complete inhibition of RANTES (CCL5) production, severely impaired TNF and KC (CXCL1) production, and reduced NF-kappaB activation in response to P. aeruginosa stimulation. In vivo, TRIF-deficient mice showed a complete inhibition of RANTES production, a severely impaired TNF and KC production, and an efficient MIP-2 and IL-1beta production in the lung following P. aeruginosa infection. This outcome was associated with a delayed recruitment of neutrophils into the airways. These results suggest that TRIF mediates a distinct cytokine/chemokine profile in response to P. aeruginosa infection. P. aeruginosa-induced RANTES production is completely dependent on TRIF pathway in mice. Importantly, TRIF deficiency leads to impaired clearance of P. aeruginosa from the lung during the initial 24-48 h of infection. Thus, TRIF represents a novel mechanism involved in the development of host response to P. aeruginosa infection.  相似文献   

19.
IL-12-mediated type 1 inflammation confers host protection against the parasitic protozoan Toxoplasma gondii. However, production of IFN-γ, another type 1 inflammatory cytokine, also drives lethality from excessive injury to the intestinal epithelium. As mechanisms that restore epithelial barrier function following infection remain poorly understood, this study investigated the role of trefoil factor 2 (TFF2), a well-established regulator of mucosal tissue repair. Paradoxically, TFF2 antagonized IL-12 release from dendritic cells (DCs) and macrophages, which protected TFF2-deficient (TFF2(-/-)) mice from T. gondii pathogenesis. Dysregulated intestinal homeostasis in naive TFF2(-/-) mice correlated with increased IL-12/23p40 levels and enhanced T cell recruitment at baseline. Infected TFF2(-/-) mice displayed low rates of parasite replication and reduced gut immunopathology, whereas wild-type (WT) mice experienced disseminated infection and lethal ileitis. p38 MAPK activation and IL-12p70 production was more robust from TFF2(-/-)CD8(+) DC compared with WT CD8(+) DC and treatment of WT DC with rTFF2 suppressed TLR-induced IL-12/23p40 production. Neutralization of IFN-γ and IL-12 in TFF2(-/-) animals abrogated resistance shown by enhanced parasite replication and infection-induced morbidity. Hence, TFF2 regulated intestinal barrier function and type 1 cytokine release from myeloid phagocytes, which dictated the outcome of oral T. gondii infection in mice.  相似文献   

20.
The ehrlichiae are small Gram-negative obligate intracellular bacteria in the family Anaplasmataceae. Ehrlichial infection in an accidental host may result in fatal diseases such as human monocytotropic ehrlichiosis, an emerging, tick-borne disease. Although the role of adaptive immune responses in the protection against ehrlichiosis has been well studied, the mechanism by which the innate immune system is activated is not fully understood. Using Ehrlichia muris as a model organism, we show here that MyD88-dependent signaling pathways play a pivotal role in the host defense against ehrlichial infection. Upon E. muris infection, MyD88-deficient mice had significantly impaired clearance of E. muris, as well as decreased inflammation, characterized by reduced splenomegaly and recruitment of macrophages and neutrophils. Furthermore, MyD88-deficient mice produced markedly lower levels of IL-12, which correlated well with an impaired Th1 immune response. In vitro, dendritic cells, but not macrophages, efficiently produced IL-12 upon E. muris infection through a MyD88-dependent mechanism. Therefore, MyD88-dependent signaling is required for controlling ehrlichial infection by playing an essential role in the immediate activation of the innate immune system and inflammatory cytokine production, as well as in the activation of the adaptive immune system at a later stage by providing for optimal Th1 immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号