首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Using single chloroplasts of Peperomia metallica the kinetics of light-induced potential changes were studied. Three kinetic components (the initial fast rise, the decay in the light and the decay in the dark) were found to be characterized by time constants 4, 220 and 60 ms, respectively at light intensity 5000 lx and temperature 18 °C. After flash excitation the potential kept on rising for about 10 ms. Cooling of the medium down to 5 °C had no effect on the duration of potential rise after the flash.2. Variations in the medium temperature in the range 2–23 °C had little effect on photoresponse magnitude but resulted in significant acceleration of decay in the light.3. Addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (5 · 10?6 M) resulted in suppression of the magnitude of the photoresponse but was not accompanied by any change in the rate of initial rise of potential. 3-(3,4-Dichlorophenyl)-1,1-dimethylurea-inhibited photoresponse could be restored and even enhanced by subsequent addition of N-methylphenazonium methosulfate (10?4 M). N-Methylphenazonium methosulfate essentially influenced the time course and light-intensity curves of photoresponse.4. The chloroplast photoresponses were of different time-courses when elicited by red (640 nm) or far red (712 nm) light. This fact as well as an enhancement effect of combined illumination by two intermittent light beams indicate on the interaction of two photosynthetic pigment systems when the photoelectric response was formed.5. An imposed electrical field resulted in stimulation or suppression of chloroplast photoresponse depending on the polarity of the field. No indications for the existance of “reversal potential” for photoelectric response were obtained.6. A kinetic scheme of photoresponse formation is proposed, which includes two sequential photochemical reactions of photosynthesis.  相似文献   

2.
A. Kadota  M. Wada 《Protoplasma》1989,151(2-3):171-174
Summary Circular F-actin on a photooriented chloroplast was observed by rhodamine-phalloidin staining in the fernAdiantum protonemal cells in which phytochrome- or blue light receptor-mediated intracellular photoorientation of chloroplasts was induced. The circular structure located along the edge of chloroplast on the side facing the plasma membrane but not on the opposite side. Most of the chloroplasts in protonemal cell have dumbbell-shape and the circular ring-like structure was found on each half of the dumbbell. The structure was not observed in the cells which were kept in the dark, indicating the change of F-actin organization by the light condition. Possible role of the structure on the anchorage of chloroplast in its intracellular photoorientation was discussed.  相似文献   

3.
1. Particle microelectrophoresis mobility studies have been conducted with chloroplast thylakoid membranes and with isolated intact chloroplasts. 2. The pH dependence of the electrophoretic mobility indicated that at pH values above 4.3 both membrane systems carry a net negative charge. 3. Chemical treatment of thylakoids has shown that neither the sugar residues of the galactolipids in the membrane nor the basic groups of the membrane proteins having pK values between 6 and 10 are exposed at the surface. 4. However, treatment with 1-ethyl-3(3-dimethylaminopropyl)carbodiimide, together with glycine methyl ester, neutralized the negative charges on the thylakoid membrane surface indicating the involvement of carboxyl groups which, because of their pH sensitivity, are likely to be the carboxyl groups of aspartic and glutamic acid residues. 5. The nature of the protein giving rise to the negative surface charges on the thylakoids is not known but is shown not to involve the coupling factor or the light harvesting chlorophyll a/chlorophyll b pigment . protein complex. 6. No significant effect of light was observed on the electrophoretic mobility of either thylakoids or intact chloroplasts. 7. The striking difference in the ability of divalent and monovalent cations to screen the surface charges was demonstrated and explained in terms of the Gouy-Chapman theory. 8. Calculations of the zeta-potentials for thylakoid membranes gave values for the charge density at the plane of shear to be in the region of one electronic charge per 1500--2000 A2. 9. The significance of the results is discussed in terms of cation distribution in chloroplasts and the effect of cations on photosynthetic phenomena.  相似文献   

4.
5.
A method for determination of the orientation of adsorbed structure-stable proteins using Total Internal Reflection Fluorescence is outlined. The theory has been elaborated for orientation studies on adsorbed free base cytochrome c, of which the prophyrin can be used as an intrinsic fluorescent label. The ratio of fluorescence intensities at two polarization modes of the incident light (the transverse magnetic and the transverse electric polarization mode, respectively) gives a relation between the orientation angles of the porphyrin relative to the interface. As an illustration of the theory, experimental results on the adsorption of cytochrome c at an optically transparent SnO2 film electrode are presented. It is concluded that the orientation of the molecules can only be affected by the interfacial potential during the process of adsorption, but, once adsorbed, the orientation cannot be changed anymore by variation of the potential.  相似文献   

6.
7.
The reaction of fluorescence-labeled alamethicin with unilamellar phospholipid vesicles (DOPC and DMPC) has been investigated in a stopped-flow apparatus. Clearly single exponential time functions have been observed at temperatures above the phase transition of the bilayer. This can be interpreted in terms of an essentially one-step incorporation process. The pseudo first-order forward rate is found to be quite fast, falling in a range somewhat below the diffusion controlled upper bound. The data are quantitatively very well described on the basis of a simple mechanism. This comprises diffusion of peptide into the bilayer accompanied by a more or less slower change of the secondary structure. Aggregation of the incorporated molecules at higher concentrations is indicated to be comparatively rapid.  相似文献   

8.
Polyamines are organic cations, which are considered essential for normal cell cycle progression. This view is based on results from numerous studies using a variety of enzyme inhibitors or polyamine analogues interfering with either the metabolism or the physiological functions of the polyamines. However, the presence of non-specific effects may be hard to rule out in such studies. In the present study, we have for the first time used a transgenic cell system to analyze the importance of polyamines in cell growth. We have earlier shown that expression of trypanosomal ODC in an ODC-deficient variant of CHO cells (C55.7) supported growth of these otherwise polyamine auxotrophic cells. However, one of the transgenic cell lines grew much slower than the others. As shown in the present study, the level of ODC activity was much lower in these cells, and that was reflected in a reduction of cellular polyamine levels. Analysis of cell cycle kinetics revealed that reduction of growth was correlated to prolongation of the G1, S, and G2 + M phases in the cells. Providing exogenous putrescine to the cells resulted in a normalization of polyamine levels as well as cell cycle kinetics indicating a causal relationship.  相似文献   

9.
10.
The permeant cationic dye safranine O is often used to measure mitochondrial membrane potential due to the dependence of both its absorption and fluorescence on mitochondrial energization, which causes its oligomerization inside mitochondria. In the present study we have used fluorescent correlation spectroscopy (FCS) to record the fluorescence changes on a micro level, i.e. under conditions permitting resolution of contributions from single particles (molecules of the dye and stained mitochondria). We have shown that the decrease in fluorescence signal from a suspension of energized mitochondria stained with a high safranine concentration (10 μM) is explained by the decrease in dye concentration in the medium in parallel with the accumulation of the dye inside the mitochondria, which results in fluorescence quenching. With 1 μM safranine O, the fluorescence rise after energization is caused by the accumulation of the dye up to a level not sufficient for full fluorescence quenching and also by the higher intensity of mitochondrial fluorescence on immersion of the dye in the hydrophobic milieu. Besides the estimation of the inner mitochondrial membrane potential, this approach also assesses the concentration of fluorescent particles. The non-monotonic dependence of the FCS parameter 1/G(τ→0) on the concentration of mitochondrial protein suggests heterogeneity of the system with respect to fluorescence of particles. An important advantage of the described method is its high sensitivity, which allows measurements with low concentrations and quantities of mitochondrial protein in samples (less than 10 μg).  相似文献   

11.
12.
G.F.W. Searle  J. Barber  J.D. Mills 《BBA》1977,461(3):413-425
Chloroplasts washed with monovalent cations are found to quench 9-amino-acridine fluorescence after resuspension in a cation-free medium. This quenching occurs in the absence of a high energy state and can be reversed by the addition of salts. The effectiveness of these salts is related to the charge carried by the cations and appears to be essentially independent of the associated anions. The order of effectiveness is polyvalent > divalent > monovalent, and virtually no variation is found within the groups of monovalent cations and divalent cations tested. Furthermore, choline and lysine are as effective as alkali metal cations, and lysyl-lysine is almost as effective as alkaline earth metal cations. These results are consistent with an effect mediated by the electrical double layer at the membrane surface rather than chemical bonding, and can be qualitatively explained in terms of the Gouy-Chapman theory.It appears that 9-amino-acridine acts as a diffusible monovalent cation which increases its fluorescence when displaced from the diffuse layer adjacent to the negatively charged membrane surface. The 9-amino-acridine fluorescence changes have been experimentally correlated with the cation-induced chlorophyll a fluorescence changes also observed with isolated chloroplasts.  相似文献   

13.
The genus Phoenix (Arecaceae) comprises 14 species distributed from Cape Verde Islands to SE Asia. It includes the economically important species Phoenix dactylifera. The paucity of differential morphological and anatomical useful characters, and interspecific hybridization, make identification of Phoenix species difficult. In this context, the development of reliable DNA markers for species and hybrid identification would be of great utility. Previous studies identified a 12 bp polymorphic chloroplast minisatellite in the trnG (GCC)-trnfM (CAU) spacer, and showed its potential for species identification in Phoenix. In this work, in order to develop an efficient DNA barcode marker for Phoenix, a longer cpDNA region (700 bp) comprising the mentioned minisatellite, and located between the psbZ and trnfM (CAU) genes, was sequenced. One hundred and thirty-six individuals, representing all Phoenix species except P. andamanensis,were analysed. The minisatellite showed 2-7 repetitions of the 12 bp motif, with 1-3 out of seven haplotypes per species. Phoenix reclinata and P. canariensis had species-specific haplotypes. Additional polymorphisms were found in the flanking regions of the minisatellite, including substitutions, indels and homopolymers. All this information allowed us to identify unambiguously eight out of the 13 species, and overall 80% of the individuals sampled. Phoenix rupicola and P. theophrasti had the same haplotype, and so had P. atlantica, P. dactylifera, and P. sylvestris (the “date palm complex” sensu Pintaud et al. 2013). For these species, additional molecular markers will be required for their unambiguous identification. The psbZ-trnfM (CAU) region therefore could be considered as a good basis for the establishment of a DNA barcoding system in Phoenix, and is potentially useful for the identification of the female parent in Phoenix hybrids.  相似文献   

14.
Thermal injury kinetics in electrical trauma.   总被引:4,自引:0,他引:4  
The distribution of electrical current and the resultant Joule heating in tissues of the human upper extremity for a worst-case hand-to-hand high-voltage electrical shock was modelled by solving the Bioheat equation using the finite element method. The model of the upper extremity included skin, fat, skeletal muscle, and bone. The parameter sets for these tissues included specific thermal and electrical properties and their respective tissue blood flow rates. The extent of heat mediated cellular injury was estimated by using a damage rate equation based on a single energy barrier chemical reaction model. No cellular injury was assumed to occur for temperatures less than 42 degrees C. This model was solved for the duration of Joule heating required to produce membrane damage in cells, termed the lethal time (of contact) for injury. LT's were determined for contact voltages ranging from 5 to 20 kV. For a 10,000 volt electrical shock LT's for skeletal muscle are predicted to be: 0.5 second in the distal forearm, 1.1 second in the mid-forearm, 1.2 second in the proximal elbow, and 2.0 seconds in the mid-arm. This analysis of the electrical shock provides useful insight into the mechanisms of resultant tissue damage and provides important performance guidelines for the development of safety devices.  相似文献   

15.
The focal extracellular potential (FEP) described in this study is an electrophysiological signal related to the transmembrane potential (V(m)) of cardiac myocytes that avoids the mechanical fragility, interference with contraction, and intracellular contact associated with conventional whole cell recording. One end of a frog ventricular myocyte was secured into a glass holding pipette. The FEP was measured differentially between this pipette and a bath pipette while the cell was voltage- or current-clamped by a third whole cell pipette. The FEP appeared as an amplitude-truncated action potential, while FEP duration accurately reflected the action potential duration (APD) at 90% repolarization (APD(90)). FEP magnitude increased as the holding pipette K(+) concentration ([K(+)]) was increased. The FEP-voltage relation was quasi-linear at negative V(m) with a slope that increased with elevated holding pipette [K(+)]. Increasing the membrane conductance inside the holding pipette by adding amphotericin B or cromakalim linearized the FEP-voltage relation across all V(m). The FEP accurately reported electrical activation and APD(90) during changes of stimulation frequency and episodes of cellular stretch.  相似文献   

16.
The initial reaction kinetics of succinate dehydrogenase in situ were investigated in sections of mouse unfixed liver using an ARGUS-100 image analyser system. The sections were incubated on substrate-containing agarose gel films. Images of a section, illuminated with monochromatic light (584 nm), were captured with the image analyser in real time at intervals of 10 s during the incubation. The absorbances of selected hepatocytes in the successive images were determined as a function of time. In every cell, the absorbance increased nonlinearly after the first minute of incubation. The initial velocity of the dehydrogenase was calculated from the linear activities during the first 20 s of incubation. Hanes plots of the initial velocities and succinate concentration yielded the following mean kinetic constants. For periportal hepatocytes, the apparent Km = 1.2 +/- 0.8 mM and Vmax = 29 +/- 2 mumol hydrogen equivalents formed/cm3 hepatocyte cytoplasm per min. For pericentral hepatocytes, Km = 1.4 +/- 1.0 mM and Vmax = 21 +/- 2 mumol hydrogen equivalents/cm3 per min. The Km values are very similar to those determined previously from biochemical assays. These results, and the observed dependence of the initial velocity on the enzyme concentration, suggest that the technique reported here is valid for the histochemical assay of succinate dehydrogenase.  相似文献   

17.
The adsorption of bacteriorhodopsin(bR)-containing purple membranes (PM) to black lipid membranes (BLM) was used to study the charge translocation kinetics of bR upon flash excitation.

The discharge of the PM-BLM system after charging upon illumination is found to proceed quite slowly (discharge time up to several minutes) but is considerably accelerated by addition of the protonophore FCCP.

Therefore, the dependence of the proton transfer kinetics in bR on electrical potentials generated by preceding flashes of varying repetition rate and intensity was investigated. The kinetics are slowed down with increasing flash intensity as well as repetition rate. This effect is partly abolished by small amounts of FCCP.

A new model is introduced which takes into account the instantaneous feedback of the electrical potential on the kinetics of the pump current. It explains the observed deviations from first-order kinetics and renders an approach with “distributed kinetics” unnecessary.

  相似文献   

18.
19.
Calcium dynamics associated with a single action potential were studied quantitatively in the calyx of Held, a large presynaptic terminal in the rat brainstem. Terminals were loaded with different concentrations of high- or low-affinity Ca2+ indicators via patch pipettes. Spatially averaged Ca2+ signals were measured fluorometrically and analyzed on the basis of a single compartment model. A single action potential led to a total Ca2+ influx of 0.8-1 pC. The accessible volume of the terminal was about 0.4 pl; thus the total calcium concentration increased by 10-13 microM. The Ca(2+)-binding ratio of the endogenous buffer was about 40, as estimated from the competition with Fura-2, indicating that 2.5% of the total calcium remained free. This is consistent with the peak increase in free calcium concentration of about 400 nM, which was measured directly with MagFura-2. The decay of the [Ca2+]i transients was fast, with time constants of 100 ms at 23 degrees C and 45 ms at 35 degrees C, indicating Ca2+ extrusion rates of 400 and 900 s-1, respectively. The combination of the relatively low endogenous Ca(2+)-binding ratio and the high rate of Ca2+ extrusion provides an efficient mechanism for rapidly removing the large Ca2+ load of the terminal evoked by an action potential.  相似文献   

20.
1. A reversible light-induced enhancement of the fluorescence of a "hydrophobic fluorophore", 12-(9-anthroyl)-stearic acid (anthroyl stearate), is observed with chloroplasts supporting phenazine methosulfate, cyclic or 1,1'-ethylene-2,2'-dipyridylium dibromide (Diquat) pseudo-cyclic electron flow; no fluorescence change is observed when methyl viologen or ferricyanide are used as electron acceptors. The stearic acid moiety of anthroyl stearate is important for its localization and fluorescence response in the thylakoid membrane, since structural analogs of anthroyl stearate lacking this group do not show the same response. 2. This effect is decreased under phosphorylating conditions (presence of ADP, Pi, Mg2+), and completely inhibited by the uncoupler of phosphorylation NH4Cl(5-10mM), as well as the ionophores nigericin and gramicidin-D (both at 5 - 10(-8)M). The MgCl2 concentration dependence of the anthroyl stearate enhancement effect is identical to that previously observed for cyclic photophosphorylation, as well as for the formation of a "high energy intermediate". The anthroyl stearate fluorescence enhancement is inhibited by increasing concentrations of ionophores in parallel with the decrease in ATP synthesis, but is essentially unaffected by specific inhibitors (Dio-9 and phlorizin) of photophosphorylation; thus, it appears that anthroyl stearate monitors a component of the "high energy state" of the thylakoid membrane rather than a terminal phosphorylation step. 3. The light-induced anthroyl stearate fluorescence enhancement is suggested to monitor a proton gradient in the energized chloroplast because (a) similar enhancement can be produced by sudden injection of hydrogen ions in a solution of anthroyl stearate; (b) when the proton gradient is dissipated by gramicidin or nigericin light-induced anthroyl stearate fllorescence is eliminated; (c) when the proton gradient is dissipated by tetraphenylboron, light-induced anthroyl stearate fluorescence decreases, and (d) light-induced anthroyl stearate fluorescence change as a function of pH is qualitatively similar to that observed with other probes for a proton gradient (e.g. 9-aminoacridine). Furthermore, anthroyl stearate does not monitor H+ uptake per se because (a) the pH dependence of H+ transport is different from that of the anthroyl stearate fluorescence change, and (b) tetraphenylboron, which does not inhibit H+ uptake, reduces anthroyl stearate fluorescence. Thus, anthroyl stearate appears to be a useful probe of a proton gradient supported by phenazine methosulfate of Diquat catalyzed electron flow and is the first "non-amine" fluorescence probe utilized for this purpose in chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号