首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The nucleotide sequence was determined of the region upstream of the mukB gene of Escherichia coli. Two new genes were found, designated kicA and kicB (killing of cell); the gene order is kicB-kicA-mukB. Promoter activities were detected in the regions immediately upstream of kicB and kicA, but not in front of mukB. Gene disruption experiments revealed that the kicA disruptant was nonviable, but the kicB-disrupted mutant and the mutant lacking both the kicB and kicA genes were able to grow. When kicA disruptant cells bearing a temperature-sensitive replication plasmid carrying the kicA + gene were grown at 30° C and then transferred to 42° C, the mutant cells gradually lost colony-forming ability, even in the presence of a mukB + plasmid. Rates of protein synthesis, but not of RNA or DNA synthesis, fell dramatically during incubation at 42° C. These results suggested that the kicB gene encodes a killing factor and the kicA gene codes for a protein that suppresses the killing function of the kicB gene product. It was also demonstrated that KicA and KicB can function as a post-segregational killing system, when the genes are transferred from the E. coli chromosome onto a plasmid.  相似文献   

2.
Expression of a number of genes during stationary phase in Escherichia coli is controlled by the alternative sigma factor sigma s (KatF). Promoters recognized by sigma s do not present a well-defined consensus sequence in their -10 and -35 regions. By polyacrylamide gel electrophoresis of DNA fragments performed at different temperatures, and by computer prediction analyses, we have found that sigma s-regulated promoters are located in regions where DNA shows intrinsic curvatures. This feature does not appear in a stationary-phase-induced promoter which is not controlled by sigma s. We propose that DNA bending may help in recognition and/or binding of sigma s to stationary-phase-induced promoters.  相似文献   

3.
We have compiled and aligned the DNA sequences of 554 promoter regions from Escherichia coli and analysed the alignment for sequence similarities. We have focused on the similarities and differences between promoters that either do or do not contain an extended –10 element. The distribution of –10 and –35 hexamer element sequences, the range of spacer lengths between these elements and the frequencies of occurrence of different nucleotides, dinucleotides and trinucleotides were investigated. Extended –10 promoters, which contain a 5′-TG-3′ element, tend to have longer spacer lengths than promoters that do not. They also tend to show fewer matches to the consensus –35 hexamer element and contain short runs of T residues in the spacer region. We have shown experimentally that the extended –10 5′-TG-3′ motif contributes to promoter activity at seven different promoters. The importance of the motif at different promoters is dependent on the sequence of other promoter elements.  相似文献   

4.
5.
Replacement of the CRP-binding site of the gal control region by curved sequences can lead to the restoration of promoter strength in vivo. One curved sequence called 5A6A, however, failed to do so. The gene hns exerts a strong negative control on the resulting 5A6A gal promoter as well as on the distant bla promoter, specifically in a 5A6A gal context. The product of this gene, H-NS, displays a better affinity for this particular insert compared to other curved sequences. Mechanisms by which H-NS may repress promoters both at short and long distances from a favoured binding site are discussed.  相似文献   

6.
Previous work has shown that the base sequence of the DNA segment immediately upstream of the -10 hexamer at bacterial promoters (the extended -10 element) can make a significant contribution to promoter strength. Guided by recently published structural information, we used alanine scanning and suppression mutagenesis of Region 2.4 and Region 3.0 of the Escherichia coli RNA polymerase sigma(70) subunit to identify amino acid sidechains that play a role in recognition of this element. Our study shows that changes in these regions of the sigma(70) subunit can affect the recognition of different extended -10 element sequences.  相似文献   

7.
8.
9.
10.
The perceptron algorithm has been applied for E. coli promotors searching. To choose the appropriate promoter signs the statistical analysis was performed. By the modified perceptron method a vector, which exactly divides promoters and non-promotors in the learning sequences and gives nearly the same results as the statistical vector, has been obtained. By using this vector two potential promotors have been found at the phoE-proB chromosome region.  相似文献   

11.
An algorithm from the pattern recognition theory 'generalized portrait' was used to find a distinguishing vector (scoring matrix) for E. coli promoters. We have attempted to solve three closely linked problems: (i) the selection of significant features of the signal; (ii) subsequent multiple alignment and (iii) calculation of the vector coordinates. Promoters with known strength have been successfully ranked in the correct order using this vector. We demonstrate the use of this method in predicting the location of promoters. A revised consensus promoter sequence is also presented.  相似文献   

12.
Summary Phage MudII301 was used to isolate new periplasmic-leaky mutants of Escherichia coli K12 carrying an lkyB-lacZ gene fusion. The properties of strain JC2299 carrying the lkyB-2299 insertion mutation were identical to those of strain JC207 carrying the previously described lkyB-207 mutation. The LkyB-beta-galactosidase hybrid protein was partially extracellular and membrane bound. It was shown that both a nonsense (envZ-22) and a polar (ompR::Tn10) mutation in the ompB operon led to an increase of beta-galactosidase activity in the lkyB-lacZ fusion strain. On the other hand, mutations in the phoB, phoR, phoS, phoT, malT or envY genes had no effect on lkyB gene expression.  相似文献   

13.
14.
The effect of upstream uncD sequences on expression of the Escherichia coli uncC gene, encoding the epsilon subunit of F1-ATPase, was studied. uncC expression was reduced severalfold in plasmid constructs bearing, in addition to uncC, a region of uncD located between 85 and 119 bases upstream from the uncC initiation codon. This reduction was independent of in-frame translation of the uncD sequences. An mRNA stem-loop structure in which sequences located within the inhibitory region of uncD base pair with the uncDC intercistronic region is suggested to function in modulating uncC expression.  相似文献   

15.
16.
The expression of the nrd operon encoding ribonucleotide reductase in Escherichia coli has been shown to be cell cycle regulated. To identify the cis-acting elements required for the cell cycle regulation of the nrd promoter, different 5' deletions as well as site-directed mutations were translationally fused to a lacZ reporter gene. The expression of beta-galactosidase from these nrd-lacZ fusions in single-copy plasmids was determined with synchronously growing cultures obtained by repeated phosphate starvation as well as with exponentially growing cultures by flow cytometry analysis. Although Fis and DnaA, two regulatory proteins that bind at multiple sites on the E. coli chromosome, have been found to regulate the nrd promoter, the results in this study demonstrated that neither Fis nor DnaA was required for nrd cell cycle regulation. A cis-acting upstream AT-rich sequence was found to be required for the cell cycle regulation. This sequence could be replaced by a different sequence that maintained the AT richness. A flow cytometry analysis that combined specific immunofluorescent staining of beta-galactosidase with a DNA-specific stain was developed and employed to study the nrd promoter activity in cells at specific cell cycle positions. The results of the flow cytometry analysis confirmed the results obtained from studies with synchronized cells.  相似文献   

17.
One of the necessary conditions for a protein to be foldable is the presence of a complete set of folding elements (FEs) that are short contiguous peptide segments distributed over an amino acid sequence. Previous studies indicated the FE assembly model of protein folding, in which the FEs interact with each other and coalesce to form an intermediate(s) early in the folding reaction. This suggests that a clue to the understanding of the determinants of protein foldability can be found by investigating how the FEs interact with each other early in the folding and thereby elucidating roles of the FEs in protein folding. To reveal the formation process of FE-FE interactions, we studied the early folding events of Escherichia coli dihydrofolate reductase (DHFR) utilizing systematic sequence perturbation analysis. Here, systematic single amino acid substitutions were introduced inside of the FEs (W30X in FE2, V40X in FE3, N59X in FE4, and I155X in FE10; X refers to various amino acid residues), and their kinetic refolding reactions were measured by stopped-flow circular dichroism and fluorescence. We show that the interactions around Trp30 and Ile155 are formed in the burst phase intermediate, while those around Val40 and Asn59 are formed in the transition state of the subsequent folding phase (tau5-phase) and in much later processes, respectively. These and previous results suggest that FE2 and FE10, and also FE1 and FE7, involved in the loop subdomain of DHFR, interact with each other within a millisecond time range, while the stable FE3-FE4 interactions are formed in the later processes. This may highlight the important roles of the FEs mainly inside of the loop subdomain in formation of the burst phase intermediate having a hydrophobic cluster and native-like overall topology and in acquisition of the foldability of DHFR.  相似文献   

18.
19.
Escherichia coli RecA protein catalyzes the central DNA strand-exchange step of homologous recombination, which is essential for the repair of double-stranded DNA breaks. In this reaction, RecA first polymerizes on single-stranded DNA (ssDNA) to form a right-handed helical filament with one monomer per 3 nt of ssDNA. RecA generally binds to any sequence of ssDNA but has a preference for GT-rich sequences, as found in the recombination hot spot Chi (5′-GCTGGTGG-3′). When this sequence is located within an oligonucleotide, binding of RecA is phased relative to it, with a periodicity of three nucleotides. This implies that there are three separate nucleotide-binding sites within a RecA monomer that may exhibit preferences for the four different nucleotides. Here we have used a RecA coprotease assay to further probe the ssDNA sequence specificity of E.coli RecA protein. The extent of self-cleavage of a λ repressor fragment in the presence of RecA, ADP-AlF4 and 64 different trinucleotide-repeating 15mer oligonucleotides was determined. The coprotease activity of RecA is strongly dependent on the ssDNA sequence, with TGG-repeating sequences giving by far the highest coprotease activity, and GC and AT-rich sequences the lowest. For selected trinucleotide-repeating sequences, the DNA-dependent ATPase and DNA-binding activities of RecA were also determined. The DNA-binding and coprotease activities of RecA have the same sequence dependence, which is essentially opposite to that of the ATPase activity of RecA. The implications with regard to the biological mechanism of RecA are discussed.  相似文献   

20.
Mak WB  Fix D 《Mutation research》2008,638(1-2):154-161
We investigated the effect of altering the DNA sequence surrounding a mutable target site on the production of ultraviolet light (UV) induced mutations. Site-directed base substitutions were incorporated on both sides of a TAA sequence encoding a UAA nonsense defect in the tyrA14 allele of Escherichia coli. This allele is readily revertable by UV and a total of eight different base substitution mutations can be recovered. Five different strains harboring DNA sequences allowing the formation of 5'-TT, 5'-CT and 5'-TA* photoproducts were constructed and exposed to UV. DNA sequence analysis was used to determine the spectrum of the revertants that were recovered. The results showed that changes at the 3'-base of a TT site were predominantly T to C transitions and T to A transversions. However, unlike the TT site, a 5'-CT site produced a relatively high frequency of T to G transversions. In addition, T to A transversions that could not have been targeted by a cyclobutane-type or [6-4]-type pyrimidine dimer were produced; this result suggested that these mutations may be targeted by a TA* photoproduct. Also, a distinct strand bias was noted for two mechanistically identical base substitutions in a strain having a palindromic target sequence; this result may reflect an unequal damage distribution or processing of photoproducts as a consequence of asymmetric DNA replication. Finally, our results show that DNA sequences expected to allow the greatest density of UV-induced DNA damage produce the highest mutation frequencies. Overall, these findings provide new insights regarding the role of DNA photoproducts in UV mutagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号