首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Pascagoula watershed likely offers the greatest possibility for the survival of the Gulf sturgeon, Acipenser oxyrinchus desotoi, within Mississippi. Thus, understanding and preserving the connectivity between distant habitats in this region plays a major role in protecting and managing such anadromous fish populations. The focus of this project was to determine the within‐river routes Gulf sturgeon take through the lower Pascagoula River downstream of the point where it splits (river kilometer 23) into two distinct distributaries. Sixty days were sampled throughout a two‐year period with a total effort of 81 947 net‐meter‐hours and eight Gulf sturgeon were captured, ranging from 74 to 189 cm FL and weighing from 3.6 to 52.6 kg. Using an array of automated telemetry receivers, acoustically tagged Gulf sturgeon movements were monitored within the lower river and associated estuary. Estimated residence times (days) suggest Gulf sturgeon appear to prefer the eastern distributary upriver from Bayou Chemise as the primary travel corridor between freshwater habitats and marine feeding grounds. The western distributary mouth was more highly used by Gulf sturgeon during both seasonal migrations between upriver and offshore habitats. Thus, the western distributary appears to represent the main entrance point utilized by Gulf sturgeon to the Pascagoula River watershed and should be protected as the eastern distributary mouth has been altered from a natural marsh edge to one of hardened surfaces.  相似文献   

2.
The locations and habitat features of freshwater holding areas and the timing of fall migration are undocumented for Gulf sturgeon in the Pascagoula River drainage, Mississippi. Our objectives were to identify and characterize holding areas for Gulf sturgeon (Acipenser oxyrinchus desotoi), document their summer and fall movement patterns, and determine migration cues. To do this we captured, radio‐tagged, and monitored movement of Gulf sturgeon in the Pascagoula River drainage and analyzed these data using geographic information systems. From May to November Gulf sturgeon congregate in a holding area in the lower portion of the Pascagoula River and Big Black Creek [river kilometers (rkm) 57–68] and near Cumbest Bluff (rkm 40), before they return to the Gulf of Mexico. While in the holding area, Gulf sturgeon were typically found in deep locations, either in or downstream from river bends. As found in other rivers, Gulf sturgeon in the Pascagoula River showed little movement within the holding area and often stayed within a single river bend; although we observed local movements by some individuals (under 10 rkm). In the Pascagoula River, Gulf sturgeon initiated their migration out of fresh water from late‐September to mid‐October, coincident with shorter day length, falling water temperature (mean = 23.7°C, range 21–26°C), and elevated river flow. Our work demonstrates that the lower Pascagoula River serves as a vital area for Gulf sturgeon.  相似文献   

3.
J. Stabile  J. R. Waldman  F. Parauka    I. Wirgin 《Genetics》1996,144(2):767-775
Efforts have been proposed worldwide to restore sturgeon populations through the use of hatcheries to supplement natural reproduction and to reintroduce sturgeon where they have become extinct. We examined the population structure and inferred the extent of homing in the anadromous Gulf of Mexico (Gulf) sturgeon (Acipenser oxyrinchus desotoi). Restriction fragment length polymorphism and control region sequence analyses of mitochondrial DNA (mtDNA) were used to identify haplotypes of Gulf sturgeon specimens obtained from eight drainages spanning the subspecies' entire distribution from Louisiana to Florida. Significant differences in haplotype frequencies indicated substantial geographic structuring of populations. A minimum of four regional or river-specific populations were identified (from west to east): (1) Pearl River, LA and Pascagoula River, MS, (2) Escambia and Yellow rivers, FL, (3) Choctawhatchee River, FL, and (4) Apalachicola, Ochlockonee, and Suwannee rivers, FL. Estimates of maternally mediated gene flow between any pair of the four regional or river-specific stocks ranged between 0.15 to 1.2. Tandem repeats in the mtDNA control region of Gulf sturgeon were not perfectly conserved. This result, together with an absence of heteroplasmy and length variation in Gulf sturgeon mtDNA, indicates that the molecular mechanisms of mtDNA control region sequence evolution differ among acipenserids.  相似文献   

4.
Evidence of autumn spawning of Gulf sturgeon Acipenser oxyrinchus desotoi in the Suwannee River, Florida, was compiled from multiple investigations between 1986 and 2008. Gulf sturgeon are known from egg collections to spawn in the springtime months following immigration into rivers. Evidence of autumn spawning includes multiple captures of sturgeon in September through early November that were ripe (late‐development ova; motile sperm) or exhibited just‐spawned characteristics, telemetry of fish that made >175 river kilometer upstream excursions to the spawning grounds in September–October, and the capture of a 9.3 cm TL age‐0 Gulf sturgeon on 29 November 2000 (which would have been spawned in late September 2000). Analysis of age‐at‐length data indicates that ca. 20% of the Suwannee River Gulf sturgeon population may be attributable to autumn spawning. However, with the very low sampling effort expended, eggs or early life stages have not yet been captured in the autumn, which would be the conclusive proof of autumn spawning. More sampling, and sampling at previously unknown sites frequented by acoustic telemetry fish, would be required to find eggs.  相似文献   

5.
Biology, fisheries, and conservation of sturgeons and paddlefish in China   总被引:26,自引:0,他引:26  
This paper reviews five of the eight species of acipenseriforms that occur in China, chiefly those of the Amur and Yangtze rivers. Kaluga Huso dauricus and Amur sturgeon Acipenser schrenckii are endemic to the Amur River. Both species still support fisheries, but stocks are declining due to overfishing. Acipenseriformes of the Yangtze River are primarily threatened by hydroelectric dams that block free passage to spawning and feeding areas. The Chinese paddlefish Psephurus gladius now is rare in the Yangtze River system, and its spawning activities were severely limited by completion of the Gezhouba Dam in 1981. Since 1988, only 3–10 adult paddlefishes per year have been found below the dam. Limited spawning still exists above the dam, but when the new Three Gorges Dam is complete, it will further threaten the paddlefish. Artificial propagation appears to be the only hope for preventing extinction of P. gladius, but it has yet to be successfully bred in captivity. Dabry's sturgeon A. dabryanus is a small, exclusively freshwater sturgeon found only in the Yangtze River system. It is concentrated today in reaches of the main stream above Gezhouba Dam. The fishery has been closed since 1983, but populations continue to decline. Acipenser dabryanus has been cultured since the 1970s, and holds promise for commercial aquaculture; availability of aquacultural methods offers hope for enhancing natural populations. The Chinese sturgeon A. sinensis occurs in the Yangtze and Pearl rivers and seas of east Asia. There is still disagreement about the taxonomy of the Pearl and Yangtze River populations. The Yangtze River population is anadromous. Adults begin spawning at about age 14 years (males) and 21 years (females), and adults spend over 15 months in the river for reproduction. Spawning sites of A. sinensis were found every year since 1982 below the Gezhouba Dam, but it seems that insufficient suitable ground is available for spawning. Since 1983, commercial fishing has been prohibited but more measures need to be taken such as establishing protected areas and characterizing critical spawning, summering and wintering habitats.  相似文献   

6.
Dams can impede access to habitats that are required for the completion of life history phases of many migratory fish species, including anadromous sturgeons. Various forms of fish passage have been developed to permit migratory fishes to move above dams, but many dams still lack such structures. Translocation of ripe, mature fish above dams has been used as a first step to determine the efficacy of potential fish passage systems. The anadromous Gulf sturgeon, Acipenser oxyrinchus desotoi, inhabits the Gulf of Mexico and coastal rivers from Florida to Louisiana, and requires upriver spawning habitats to complete its life cycle. Historic overfishing and other anthropogenic threats, including dam construction, led to species declines and subsequent listing as threatened under the Endangered Species Act. In the Apalachicola River, FL, the 1957 completion of Jim Woodruff Lock and Dam (JWLD) created Lake Seminole and blocked Gulf Sturgeon from accessing 78% of historic riverine habitat—including potential spawning habitat—in the Apalachicola-Chattahoochee-Flint River Basin. The objective of this pilot study was to determine the efficacy of passage around JWLD through the trap-and-transport of 10 male Gulf sturgeon from the Apalachicola River to the reservoir above the dam. Through the use of acoustic telemetry, we were able to assess the ability of these fish to navigate Lake Seminole, access potentially suitable spawning habitat in the Flint and River, and complete their seasonal outmigration to the Gulf of Mexico. In this study, 2 translocated sturgeon moved 69 km upstream into potential spawning habitat in the Flint River, but 6 fish fell back through the lock/spill gates at JWLD within days of translocation. Four sturgeon appeared to remain trapped in the reservoir, and their long-term survival was deemed unlikely. Given our low sample size, and examination of male fish only, we cannot conclude that a trap-and-transport program would ultimately fail to restore spawning above JWLD, but our findings suggest that the risk of adult mortality is nontrivial. Alternatively, we suggest future studies examine the population level trade-offs associated with translocation of adults or consider alternatives such as a head-start program to rear and release juvenile sturgeon above JWLD to study viability of their passage in addition to effects on overall recruitment in the population.  相似文献   

7.
The degree of natal philopatry relative to natal dispersal in animal populations has important demographic and genetic consequences and often varies substantially within species. In salmonid fishes, lakes have been shown to have a strong influence on dispersal and gene flow within catchments; for example, populations spawning in inflow streams are often reproductively isolated and genetically distinct from those spawning in relatively distant outflow streams. Less is known, however, regarding the level of philopatry and genetic differentiation occurring at microgeographic scales, for example, where inflow and outflow streams are separated by very small expanses of lake habitat. Here, we investigated the interplay between genetic differentiation and fine‐scale spawning movements of brown trout between their lake‐feeding habitat and two spawning streams (one inflow, one outflow, separated by <100 m of lake habitat). Most (69.2%) of the lake‐tagged trout subsequently detected during the spawning period were recorded in just one of the two streams, consistent with natal fidelity, while the remainder were detected in both streams, creating an opportunity for these individuals to spawn in both natal and non‐natal streams. The latter behavior was supported by genetic sibship analysis, which revealed several half‐sibling dyads containing one individual that was sampled as a fry in the outflow and another that was sampled as fry in the inflow. Genetic clustering analyses in conjunction with telemetry data suggested that asymmetrical dispersal patterns were occurring, with natal fidelity being more common among individuals originating from the outflow than the inflow stream. This was corroborated by Bayesian analysis of gene flow, which indicated significantly higher rates of gene flow from the inflow into the outflow than vice versa. Collectively, these results reveal how a combination of telemetry and genetics can identify distinct reproductive behaviors and associated asymmetries in natal dispersal that produce subtle, but nonetheless biologically relevant, population structuring at microgeographic scales.  相似文献   

8.
Lake sturgeon Acipenser fulvescens are considered rare and were nearly extirpated in the Mississippi River in Missouri by 1931 as a result of overfishing and habitat fragmentation. Propagation efforts have been implemented by the Missouri Department of Conservation since 1984 as means to restore the lake sturgeon population. Although recent population increases have been observed, a formalized evaluation to determine if lake sturgeon are self‐sustaining in the Missouri portion of the Mississippi River has not been completed. Therefore, the objectives of this study were to: (i) determine the proportion of reproductive individuals, (ii) evaluate seasonal movement patterns of adults, and (iii) validate purported spawning locations within the Mississippi River in Missouri. Lake sturgeon catch data indicated that approximately 11 percent of the population are reproductively mature. Additionally, telemetry data confirms that the greatest movement by adult lake sturgeon occurs during spring, which suggests spawning behavior. Finally, it was possible to document lake sturgeon embryos and emergent fry larvae below Melvin Price Locks and Dam 26 in the Upper Mississippi River near St. Louis, Missouri. Water velocity, depth, and substrate size were measured at this location and embryos were collected and hatched in the laboratory. River gage data suggest that spawning behavior may have been elicited by a large influx of water during a drawdown period of water above the dam. This study represents the first documented spawning of A. fulvescens in the Mississippi River and highlights the success of recovery efforts in Missouri.  相似文献   

9.
Post‐release survival and upstream movement of Gulf of Mexico sturgeon (Acipenser oxyrinchus desotoi) in the Suwannee River, Florida, were examined following induced spawning using carp pituitary extract (CPE). Six mature females (one CPE‐treated and five control) and 12 mature males (five CPE‐treated and seven control) were implanted with ultrasonic tags in March 2001 during their ingress into the Suwannee River. All CPE‐treated sturgeon and 10 of the 12 control fish were relocated using ultrasonic telemetry during 4 months following their release, resulting in 100% survival of treated fish and 83% known survival of control fish. Two control fish (one female and one male) could not be relocated after 2 weeks post‐release. CPE treatment did not result in mortality but did affect upstream movement behavior, with CPE‐treated males moving upstream at a significantly slower rate than control males and females. Similarly, the maximum observed distance that the fish moved upstream differed among control fish (males and females) and treated males, with control fish moving further upstream than CPE‐treated males. The rate of upstream movement for the single CPE‐treated female was similar to the control females and the maximum upstream distance that this female was located was near a putative spawning area. In general, the environmental parameters of temperature, dissolved oxygen, and conductivity differed over the course of the study but did not differ between treatments and sexes. Treating sturgeon with CPE to induce spawning therefore did not cause mortality but did appear to slow the rate of upstream movement and maximum distance moved in male Gulf sturgeon.  相似文献   

10.
We collected the first life history information on shortnose sturgeon ( Acipenser brevirostrum ) in any of the rivers to Chesapeake Bay, the geographic center of the species range. In the Potomac River, two telemetry-tagged adult females used 124 km of river: a saltwater/freshwater reach at river km (rkm) 63−141 was the foraging−wintering concentration area, and one female migrated to spawn at rkm 187 in Washington, DC. The spawning migration explained the life history context of an adult captured 122 years ago in Washington, DC, supporting the idea that a natal population once lived in the river. Repeated homing migrations to foraging and wintering areas suggested the adults were residents, not transient coastal migrants. All habitats that adults need to complete life history are present in the river. The Potomac River shortnose sturgeon offers a rare opportunity to learn about the natural rebuilding of a sturgeon population.  相似文献   

11.
The Chinese sturgeon (Acipenser sinensis) is an anadromous fish inhabiting the Yangtze River. Migration of Chinese sturgeon from the estuary to upper Yangtze River was blocked by Gezhou Dam, completed in 1981, and a new, much smaller, spawning ground was established below the dam. However, Three Gorges Dam began operating in 2003, altering hydrological conditions in the new spawning grounds and the impact on Chinese sturgeon reproduction was severe. The annual survey of Chinese sturgeon shows that both spawning scale and breeding population decreased during this period. To illustrate the impact of Three Gorges Dam on the spawning grounds and reproduction of Chinese sturgeon, the habitat suitability of spawning grounds on spawning day was simulated using River2D. Results show that the area of suitable spawning grounds positively correlates with the scale of reproduction and both have decreased sharply since 2003.  相似文献   

12.
长江中华鲟繁殖群体资源现状的初步研究   总被引:8,自引:1,他引:7  
根据1994—1998年获得的246尾标本,对中华鲟繁殖群体的性比、性腺发育成熟个体比例、年龄结构、体长和体重特征等进行了研究。并结合历史资料,对其种群资源现状进行评价,提出了相应的资源保护措施建议。  相似文献   

13.
We observed Suwannee River Gulf sturgeon, Acipenser oxyrinchus desotoi, in the laboratory and found free embryos (first interval after hatching) hid under rocks and did not migrate. Thus, wild embryos should be at the spawning area. Larvae (first interval feeding exogenously) initiated a slow downstream migration, and some juveniles (interval with adult features) continued to migrate slowly for at least 5 months, e.g., a 1-step long larva-juvenile migration. No other population of sturgeon yet studied has this migration style. A conceptual model using this result suggests wild year-0 sturgeon have a variable downstream migration style with short-duration (short distance) migrants and long-duration (long distance) migrants. This migration style should widely disperse wild fish. The model is supported by field studies that found year-0 juveniles are widely dispersed in fresh water to river km 10. Thus, laboratory and field data agree that the entire freshwater reach of river downstream of spawning is nursery habitat. Foraging position of larvae and early juveniles was mostly on the bottom, but fish also spent hours holding position in the water column, an unusual feeding location for sturgeons. The holding position of fish above the bottom suggests benthic forage in the river is scarce and fish have evolved drift feeding. The unusual migration and foraging styles may be adaptations to rear in a river at the southern limit of the species range with poor rearing habitat (low abundance of benthic forage and high summer water temperatures). Suwannee River Gulf sturgeon and Hudson River Atlantic sturgeon, A. o. oxyrinchus, are similar for initiation of migration, early habitat preference, and diel migration. The two subspecies differ greatly for migration and foraging styles, which is likely related to major differences in the quality of rearing habitat. The differences between Atlantic sturgeon populations show the need for geographical studies to represent the behavior of an entire species.  相似文献   

14.
The Kootenai River white sturgeon Acipenser transmontanus population in Idaho, US and British Columbia (BC), Canada became recruitment limited shortly after Libby Dam became fully operational on the Kootenai River, Montana, USA in 1974. In the USA the species was listed under the Endangered Species Act in September of 1994. Kootenai River white sturgeon spawn within an 18‐km reach in Idaho, river kilometer (rkm) 228.0–246.0. Each autumn and spring Kootenai River white sturgeon follow a ‘short two‐step’ migration from the lower river and Kootenay Lake, BC, to staging reaches downstream of Bonners Ferry, Idaho. Initially, augmented spring flows for white sturgeon spawning were thought to be sufficient to recover the population. Spring discharge mitigation enhanced white sturgeon spawning but a series of research investigations determined that the white sturgeon were spawning over unsuitable incubation and rearing habitat (sand) and that survival of eggs and larvae was negligible. It was not known whether post‐Libby Dam management had changed the habitat or if the white sturgeon were not returning to more suitable spawning substrates farther upstream. Fisheries and hydrology researchers made a team effort to determine if the spawning habitat had been changed by Libby Dam operations. Researchers modeled and compared velocities, sediment transport, and bathymetry with post‐Libby Dam white sturgeon egg collection locations. Substrate coring studies confirmed cobbles and gravel substrates in most of the spawning locations but that they were buried under a meter or more of post‐Libby Dam sediment. Analysis suggested that Kootenai River white sturgeon spawn in areas of highest available velocity and depths over a range of flows. Regardless of the discharge, the locations of accelerating velocities and maximum depth do not change and spawning locations remain consistent. Kootenai River white sturgeon are likely spawning in the same locations as pre‐dam, but post‐Libby Dam water management has reduced velocities and shear stress, thus sediment is now covering the cobbles and gravels. Although higher discharges will likely provide more suitable spawning and rearing conditions, this would be socially and politically unacceptable because it would bring the river elevation to or in excess of 537.66 m, which is flood stage. Thus, support should be given to habitat modifications incorporated into a management plan to restore suitable habitat and ensure better survival of eggs and larvae.  相似文献   

15.
Thirty gravid, female shovelnose sturgeon (Scaphirhynchus platorynchus) were captured in the Lower Missouri River in March 2004 to evaluate the effectiveness of physiology, telemetry and remote sensor technology coupled with change point analysis in identifying when and where Scaphirhynchus sturgeon spawn. Captured sturgeons were instrumented with ultrasonic transmitters and with archival data storage tags (DST) that recorded temperature and pressure. Female sturgeon were tracked through the suspected spawning period. Thereafter, attempts were made to recapture fish to evaluate spawning success. At the time of transmitter implantation, blood and an ovarian biopsy were taken. Reproductive hormones and cortisol were measured in blood. Polarization indices and germinal vesicle breakdown were assessed on the biopsied oocytes to determine readiness to spawn. Behavioral data collected using telemetry and DST sensors were used to determine the direction and magnitude of possible spawning‐related movements and to identify the timing of potential spawning events. Upon recapture observations of the ovaries and blood chemistry provided measures of spawning success and comparative indicators to explain differences in observed behavior. Behavioral and physiological indicators of spawning interpreted along with environmental measures may assist in the determination of variables that may cue sturgeon reproduction and the conditions under which sturgeon successfully spawn.  相似文献   

16.
Synopsis Gulf of Mexico sturgeon were collected during their natural spring spawning migrations from the Gulf of Mexico into the Suwannee River in Florida. Peak numbers were observed during March and April. During the summer periods the fish remained in the river over very localized bottom areas. In late fall, the fish migrated from the river into the Gulf of Mexico. Laboratory experiments revealed that maximum survival of eggs, embryos and larvae of Gulf of Mexico sturgeon occurred between 15 and 20° C. Although Gulf of Mexico sturgeon appear to have a high tolerance to warm water temperatures, their embryos and larvae exhibit high mortalities at temperatures of 25° C. Based on observations of Gulf of Mexico sturgeon migratory patterns and laboratory experiments we suggest that the timing and unusual migratory behavior of Gulf of Mexico sturgeon are associated with temporal water temperature changes in the river and the Gulf of Mexico. The requirements of a thermal refuge are discussed.  相似文献   

17.
White sturgeon (Acipenser transmontanus) ≥95 cm TL were monitored using acoustic and radio telemetry at a large hydroelectric dam (the Dalles Dam) on the Columbia River, during March 2004 through November 2005 to determine timing and routes of passage and to characterize general movements. Transmitters were surgically implanted into 148 fish during the study; 90 were released into the tailrace and 58 into the forebay. We documented 26 passage events by 19 tagged fish: eight upstream via fish ladders and 18 downstream, mostly through open spill gates. During the study 17 fish entered the two ladders one or more times; 11 entered only the east ladder, three entered only the north ladder, and three entered both ladders at sometime. Residence time within the ladders by individual fish was variable, ranging from about 1 min to nearly 6 months (median = 7.7 h). Only six fish successfully ascended the east ladder, one fish twice. We could not unequivocally determine which fish ladder one fish used to pass upstream. Differences in construction between the north and east fish ladders may account for the greater success of the east fish ladder in passing sturgeon upstream. Changes to operations at hydroelectric dams to benefit migrating anadromous salmonids may influence upstream or downstream passage by white sturgeon. Altering patterns and timing of spill discharge, altering fish ladder entrance attraction flows, and the use of lights, sound, and partial barriers to direct other species of fish to preferred passage routes have unknown effects on sturgeon passage. A better understanding of the consequences to the metapopulation of increasing or precluding upstream or downstream passage is needed.  相似文献   

18.
Acipenseriformes (sturgeons and paddlefish) globally have declined throughout their range due to river fragmentation, habitat loss, overfishing, and degradation of water quality. In North America, pallid sturgeon (Scaphirhynchus albus) populations have experienced poor to no recruitment, or substantial levels of hybridization with the closely related shovelnose sturgeon (S. platorynchus). The Lower Missouri River is the only portion of the species’ range where successful reproduction and recruitment of genetically pure pallid sturgeon have been documented. This paper documents spawning habitat and behavior on the Lower Missouri River, which comprises over 1,300 km of unfragmented river habitat. The objective of this study was to determine spawning locations and describe habitat characteristics and environmental conditions (depth, water velocity, substrate, discharge, temperature, and turbidity) on the Lower Missouri River. We measured habitat characteristics for spawning events of ten telemetry-tagged female pallid sturgeon from 2008–2013 that occurred in discrete reaches distributed over hundreds of kilometers. These results show pallid sturgeon select deep and fast areas in or near the navigation channel along outside revetted banks for spawning. These habitats are deeper and faster than nearby river habitats within the surrounding river reach. Spawning patches have a mean depth of 6.6 m and a mean depth-averaged water-column velocity of 1.4 m per second. Substrates in spawning patches consist of coarse bank revetment, gravel, sand, and bedrock. Results indicate habitat used by pallid sturgeon for spawning is more common and widespread in the present-day channelized Lower Missouri River relative to the sparse and disperse coarse substrates available prior to channelization. Understanding the spawning habitats currently utilized on the Lower Missouri River and if they are functioning properly is important for improving habitat remediation measures aimed at increasing reproductive success. Recovery efforts for pallid sturgeon on the Missouri River, if successful, can provide guidance to sturgeon recovery on other river systems; particularly large, regulated, and channelized rivers.  相似文献   

19.
Stocks of anadromous Atlantic sturgeon ( Acipenser oxyrhynchus ) on the east coast of the United States are severely depleted due to past over-fishing and habitat loss and degradation. All commercial fisheries for this species are now closed and several state and federal agencies are investigating the use of cultured fish for stock replenishment. A breeding and stocking protocol was developed to address genetic concerns and to provide guidance for culture programs.
Several thousand 3-month old cultured fingerling sturgeon were stocked in the Hudson River, New York, in 1994. Based on mark-recapture techniques, juvenile recoveries in 1995 and 1996 indicated that wild production was very weak in that river. In 1996, several thousand cultured and marked yearling sturgeon were stocked in the Nanticoke River in Maryland. Over the next 10 months, these fish grew well and became distributed throughout the Chesapeake Bay in Maryland and Virginia. The amount of useful information gained from these two examples of using cultured Atlantic sturgeon suggests a broader potential role. Without active intervention, such as a long-term commitment to using cultured fish, some sturgeon stocks on the U. S. Atlantic Coast may be lost.  相似文献   

20.
Mature green sturgeon, Acipenser medirostris, enter rivers along the western coast of North America in late winter to late spring and migrate upriver to spawning sites. After spawning, they may leave the river or spend the summer and autumn holding in deep pools before departing from the river with the onset of winter rains. Evidence exists that the seasonal Red Bluff Diversion Dam (RBDD) was an obstacle to the upriver migration of green sturgeon in the Sacramento River in Central California. We compared the migratory movements of green sturgeon under three different dam operation schedules, including post‐decommissioning, to assess the impact of this management action. The proportion of green sturgeon carrying acoustic transmitters that moved above the RBDD was higher when the gates were closed on June 15, one month later than the historical closure date of May 15, and increased again after the dam was decommissioned. The application of statistical analyses (generalized linear and additive mixed models) to the detection records of green sturgeon highlighted an improvement in connectivity after dam decommissioning. The data also indicate that interannual variation in river condition is an important driver of sturgeon presence on the spawning grounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号