首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because the expression level of hTERT, a catalytic subunit of human telomerase, is a rate-limiting determinant of telomerase activity, hTERT mRNA would be an excellent target of hammerhead ribozymes for the regulation of telomerase activity. We studied the efficiency of several hammerhead ribozymes targeting hTERT mRNA by transient and stable transfection procedures. To screen the potency of the ribozymes, transient ribozyme transfection and telomerase determination were performed. The ribozyme targeting 13 nucleotides downstream from the 5'-end of hTERT mRNA (13-ribozyme) exhibited the strongest telomerase-inhibitory activity, and the ribozyme to target 59 nucleotides upstream from the poly(A) tail showed clear activity. A stable transfection study confirmed that the 13-ribozyme suppressed telomerase. These observations suggest that the 13-ribozyme can regulate telomerase activity and may possess potential for cancer therapy.  相似文献   

2.
The template region of human telomerase RNA is a crucial area for regulating telomerase activity and would be a good target for ribozymes. In fact, potent telomerase inhibitory activity of the ribozyme targeting the GUC sequence of the 5(') end of this region (36-ribosome) has been well demonstrated. To search for a more potent ribozyme, we designed a divalent ribozyme to cleave both the phosphodiester bonds following the GUC and the 23 nucleotides downstream of GUA. An in vitro cleavage study showed that this divalent ribozyme cleaved telomerase RNA more efficiently than the 36-ribozyme or the 59-ribozyme to target the GUA. When this ribozyme was introduced into the carcinoma cells, its inhibitory effect on telomerase activity was less than that of the 36-ribozyme. The 59-ribozyme showed minimum activity on telomerase. This implies that, although the divalent ribozyme possesses a potent cleavage activity on hTR in vitro, the 36-ribozyme is most potent to suppress telomerase activity.  相似文献   

3.
Inhibition of gene expression by catalytic RNA (ribozymes) requires that ribozymes efficiently cleave specific sites within large target RNAs. However, the cleavage of long target RNAs by ribozymes is much less efficient than cleavage of short oligonucleotide substrates because of higher order structure in the long target RNA. To further study the effects of long target RNA structure on ribozyme cleavage efficiency, we determined the accessibility of seven hammerhead ribozyme cleavage sites in a target RNA that contained human immunodeficiency virus type 1 (HIV-1) vif - vpr . The base pairing-availability of individual nucleotides at each cleavage site was then assessed by chemical modification mapping. The ability of hammerhead ribozymes to cleave the long target RNA was most strongly correlated with the availability of nucleotides near the cleavage site for base pairing with the ribozyme. Moreover, the accessibility of the seven hammerhead ribozyme cleavage sites in the long target RNA varied by up to 400-fold but was directly determined by the availability of cleavage sites for base pairing with the ribozyme. It is therefore unlikely that steric interference affected hammerhead ribozyme cleavage. Chemical modification mapping of cleavage site structure may therefore provide a means to identify efficient hammerhead ribozyme cleavage sites in long target RNAs.  相似文献   

4.
Trans-cleaving hammerhead ribozymes with long target-specific antisense sequences flanking the catalytic domain share some features with conventional antisense RNA and are therefore termed 'catalytic antisense RNAs'. Sequences 5' to the catalytic domain form helix I and sequences 3' to it form helix III when complexed with the target RNA. A catalytic antisense RNA of more than 400 nucleotides, and specific for the human immunodeficiency virus type 1 (HIV-1), was systematically truncated within the arm that constituted originally a helix I of 128 base pairs. The resulting ribozymes formed helices I of 13, 8, 5, 3, 2, 1 and 0 nucleotides, respectively, and a helix III of about 280 nucleotides. When their in vitro cleavage activity was compared with the original catalytic antisense RNA, it was found that a helix I of as little as three nucleotides was sufficient for full endonucleolytic activity. The catalytically active constructs inhibited HIV-1 replication about four-fold more effectively than the inactive ones when tested in human cells. A conventional hammerhead ribozyme having helices of just 8 nucleotides on either side failed to cleave the target RNA in vitro when tested under the conditions for catalytic antisense RNA. Cleavage activity could only be detected after heat-treatment of the ribozyme substrate mixture which indicates that hammerhead ribozymes with short arms do not associate as efficiently to the target RNA as catalytic antisense RNA. The requirement of just a three-nucleotide helix I allows simple PCR-based generation strategies for asymmetric hammerhead ribozymes. Advantages of an asymmetric design will be discussed.  相似文献   

5.
Five short hammerhead ribozymes (Rzs) were constructed and tested, using a range ofin vitro reaction conditions, for catalytic activity against the mRNA encoding the lignin-forming peroxidase (TPX) of tobacco. Although all 5 Rzs were shown to be able to cleave the RNA substrate, percentage cleavage varied with pre-denaturation of Rz and substrate, incubation temperature, length of incubation and ribozyme (Rz)-to-substrate ratio. One Rz with two catalytic units and 60 nucleotides of complementary sequence in 3 regions was shown to most efficiently cleave the substrate under allin vitro conditions tested. This ribozyme cleaved better than the two single ribozymes from which it was made. The superior cleaving ability of this Rz was shown to be due to the accessibility of the chosen target site and to the increased length of the hybridizing arms spanning this accessible region of the RNA.  相似文献   

6.
7.
8.
9.
Two ribozymes, hammerhead ribozyme and hairpin ribozyme, and a DNA-enzyme were designed to cleave a same RNA target, the same site of the rat complement regulatory factor 512 antigen mRNA. The kinetic properties of these RNA-cleaving enzymes were measured and compared under the same conditions, using multiple turnover kinetics and competition kinetics. The catalytic efficiencies of these enzymes, and also the order of these enzymes will be discussed.  相似文献   

10.
We have mapped the 5' and 3' boundaries of the region of the human telomerase RNA (hTR) that is required to produce activity with the human protein catalytic subunit (hTERT) by using in vitro assembly systems derived from rabbit reticulocyte lysates and human cell extracts. The region spanning nucleotides +33 to +325 of the 451-base hTR is the minimal sequence required to produce levels of telomerase activity that are comparable with that made with full-length hTR. Our results suggest that the sequence approximately 270 bases downstream of the template is required for efficient assembly of active telomerase in vitro; this sequence encompasses a substantially larger portion of the 3' end of hTR than previously thought necessary. In addition, we identified two fragments of hTR (nucleotides +33 to +147 and +164 to +325) that cannot produce telomerase activity when combined separately with hTERT but can function together to assemble active telomerase. These results suggest that the minimal sequence of hTR can be divided into two sections, both of which are required for de novo assembly of active telomerase in vitro.  相似文献   

11.
12.
13.
A series of binary hammerhead ribozymes was designed and assessed in terms of cleavage activity and nuclease resistance. Enhanced nuclease resistance of binary ribozymes was achieved by incorporation of Z-modified nucleotides at the selective positions along with addition of 3'-3-linked thymidine cap. These modified binary ribozymes efficiently cleave 190-nucleotides long MDR1 mRNA fragment and display catalytic activity much higher then respective full-length analogs.  相似文献   

14.
The efficacy of intracellular binding of hammerhead ribozyme to its cleavage site in target RNA is a major requirement for its use as a therapeutic agent. Such efficacy can be influenced by several factors, such as the length of the ribozyme antisense arms and mRNA secondary structures. Analysis of various IL-2 hammerhead ribozymes having different antisense arms but directed to the same site predicts that the hammerhead ribozyme target site is present within a double-stranded region that is flanked by single-stranded loops. Extension of the low cleaving hammerhead ribozyme antisense arms by nucleotides that base pair with the single-stranded regions facilitated the hammerhead ribozyme binding to longer RNA substrates (e.g. mRNA). In addition, a correlation between the in vitro and intracellular results was also found. Thus, the present study would facilitate the design of hammerhead ribozymes directed against higher order structured sites. Further, it emphasises the importance of detailed structural investigations of hammerhead ribozyme full-length target RNAs.  相似文献   

15.
A series of binary hammerhead ribozymes was designed and assessed in terms of cleavage activity and nuclease resistance. Enhanced nuclease resistance of binary ribozymes was achieved by incorporation of 2′-modified nucleotides at the selective positions along with addition of 3′-3′-linked thymidine cap. These modified binary ribozymes efficiently cleave 190-nucleotides long MDR1 mRNA fragment and display catalytic activity much higher then respective full-length analogs.  相似文献   

16.
A new design of binary hammerhead ribozymes displaying high catalytic activity and nucleolytic stability is described. These catalytic structures consist of two partially complementary oligoribonucleotides, capable of assembling into the hammerhead-like structure without tetraloop II on binding to the RNA target. A series of these binary ribozymes targeting the translation initiation region of multiple drug resistance gene mdr1 mRNA was synthesized and assessed in terms of catalytic activity under single and multiple reaction turnover conditions. Enhanced nuclease resistance of the binary ribozymes was achieved by incorporation of 2'-modified nucleotides at selected positions, along with addition of a 3'-3'-linked thymidine cap. The new binary ribozymes exhibit higher RNA cleavage activity than their full-length analogs because of faster dissociation of cleavage products. Furthermore, an excess of one of the ribozyme strands provides the possibility to unfold structured regions of the target RNA and facilitate productive complex formation.  相似文献   

17.
王娟 《现代生物医学进展》2007,7(6):923-925,937
端粒酶几乎在所有的人类癌细胞中均异常表达,它的持久活性对肿瘤的增殖是必需的。因此,抑制端粒酶活性代表了一种新的癌症治疗机制。端粒酶全酶复合物有多处可以做为抑制剂的靶点,包括hTR、hTERT、引物锚定位点等。本文对以端粒酶RNA模板区为靶点的抗肿瘤药物设计策略进行了综述,包括对该区域进行点突变、使用反义寡核苷酸封闭模板区、改变端粒酶RNA空间构象等,并探讨了目前抑制端粒酶活性研究中存在的一些问题。  相似文献   

18.
人端粒酶逆转录酶核酶抑制端粒酶活性   总被引:9,自引:0,他引:9  
为有效切割端粒酶逆转录酶mRNA以降低端粒酶活性 ,从而使肿瘤细胞生长变慢 ,凋亡增加。设计并合成了针对端粒酶逆转录酶mRNA的锤头状核酶基因 ,构建了该核酶基因的体外转录和真核表达质粒。检测了该核酶对端粒酶逆转录酶mRNA的体外切割效力。并将该核酶基因转染至肿瘤细胞中 ,检测其对肿瘤细胞端粒酶活性和生物学性状的影响。结果表明 ,该核酶在体外和细胞内均能有效切割端粒酶逆转录酶mRNA ;在细胞内能明显抑制端粒酶活性 ,使细胞生长变慢 ,倍增时间延长。因而 ,该核酶可望成为有效的端粒酶抑制剂 ,在抑制肿瘤生长中发挥作用  相似文献   

19.
The subclass of catalytic RNAs termed ribozymes cleave specific target RNA sequences in vitro. Only circumstantial evidence supports the idea that ribozymes may also act in vivo. In this study, ribozymes with a hammerhead motif directed against a target sequence within the mRNA of the neomycin phosphotransferase gene (npt) were embedded into a functional chimeric gene. Two genes, one containing the ribozyme and the other producing the target, were cotransfected into plant protoplasts. Following in vivo expression, a predefined cleavage product of the target mRNA was detected by ribonuclease protection. Expression of both the ribozyme gene and the target gene was driven by the CaMV 35S promoter. Concomitant with the endonucleolytic cleavage of the target mRNA, a complete reduction of NPT activity was observed. An A to G substitution within the ribozyme domain completely inactivates ribozyme-mediated hydrolysis but still shows a reduction in NPT activity, albeit less pronounced. Therefore, the reduction of NPT activity produced by the active ribozyme is best explained by both hydrolytic cleavage and an antisense effect. However, the mutant ribozyme--target complex was more stable than the wildtype ribozyme--target complex. This may result in an overestimation of the antisense effect contributing to the overall reduction of gene expression.  相似文献   

20.
Stathmin is a major cytosolic phosphoprotein that plays an important role in the control of cellular proliferation by regulating the dynamics of the microtubules that make up the mitotic spindle. Because stathmin is expressed at high levels in all human cancers, it is an attractive molecular target for anticancer interventions. We had shown previously that antisense stathmin inhibition results in marked abrogation of the transformed phenotype of leukemic cells in vitro and in vivo. Unlike the antisense approach, ribozymes can catalytically cleave several molecules of target RNA. This may provide a more efficient strategy for downregulating genes, such as stathmin, that are expressed at very high levels in cancer cells. We designed several antistathmin hammerhead ribozymes and tested their cleavage activity against short synthetic stathmin RNA substrates. In vitro cleavage studies demonstrated site-specific cleavage of stathmin RNA that was dependent on ribozyme concentration and duration of exposure to ribozyme. The most active antistathmin ribozyme was capable of cleaving >90% stathmin RNA in a catalytic manner, cleaving multiple substrate molecules per ribozyme molecule. We also demonstrated that the designed antistathmin ribozymes are capable of selectively cleaving native stathmin RNA in a mixture of total RNA isolated from leukemic cells. These antistathmin ribozymes may provide a novel and effective form of gene therapy that may be applicable to a wide variety of human cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号