首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Even genetically distant prokaryotes can exchange genes between them, and these horizontal gene transfer events play a central role in adaptation and evolution. While this was long thought to be restricted to prokaryotes, certain eukaryotes have acquired genes of bacterial origin. However, gene acquisitions in eukaryotes are thought to be much less important in magnitude than in prokaryotes. Here, we describe the complex evolutionary history of a bacterial catabolic gene that has been transferred repeatedly from different bacterial phyla to stramenopiles and fungi. Indeed, phylogenomic analysis pointed to multiple acquisitions of the gene in these filamentous eukaryotes—as many as 15 different events for 65 microeukaryotes. Furthermore, once transferred, this gene acquired introns and was found expressed in mRNA databases for most recipients. Our results show that effective inter-domain transfers and subsequent adaptation of a prokaryotic gene in eukaryotic cells can happen at an unprecedented magnitude.  相似文献   

2.
3.
Language evolution is traditionally described in terms of family trees with ancestral languages splitting into descendent languages. However, it has long been recognized that language evolution also entails horizontal components, most commonly through lexical borrowing. For example, the English language was heavily influenced by Old Norse and Old French; eight per cent of its basic vocabulary is borrowed. Borrowing is a distinctly non-tree-like process--akin to horizontal gene transfer in genome evolution--that cannot be recovered by phylogenetic trees. Here, we infer the frequency of hidden borrowing among 2346 cognates (etymologically related words) of basic vocabulary distributed across 84 Indo-European languages. The dataset includes 124 (5%) known borrowings. Applying the uniformitarian principle to inventory dynamics in past and present basic vocabularies, we find that 1373 (61%) of the cognates have been affected by borrowing during their history. Our approach correctly identified 117 (94%) known borrowings. Reconstructed phylogenetic networks that capture both vertical and horizontal components of evolutionary history reveal that, on average, eight per cent of the words of basic vocabulary in each Indo-European language were involved in borrowing during evolution. Basic vocabulary is often assumed to be relatively resistant to borrowing. Our results indicate that the impact of borrowing is far more widespread than previously thought.  相似文献   

4.
Genetic material can be transmitted not only vertically from parent to offspring, but also laterally (horizontally) from one bacterial lineage to another. Lateral genetic transfer is non-uniform; biases in its nature or frequency construct communities of genetic exchange. These biases have been proposed to arise from phylogenetic relatedness, shared ecology and/or common lifestyle. Here, we test these hypotheses using a graph-based abstraction of inferred genetic-exchange relationships among 27 Escherichia coli and Shigella genomes. We show that although barriers to inter-phylogenetic group lateral transfer are low, E. coli and Shigella are more likely to have exchanged genetic material with close relatives. We find little evidence of bias arising from shared environment or lifestyle. More than one-third of donor–recipient pairs in our analysis show some level of fragmentary gene transfer. Thus, within the E. coliShigella clade, intact genes and gene fragments have been disseminated non-uniformly and at appreciable frequency, constructing communities that transgress environmental and lifestyle boundaries.  相似文献   

5.
As the Human Genome Project and other genome projects experience remarkable success and a flood of biological data is produced by means of high-throughout sequencing techniques, detection of horizontal gene transfer (HGT) becomes a promising field in bioinformatics. This review describes two freeware programs: T-REX for MS Windows and RHOM for Linux. T-REX is a graphical user interface program that offers functions to reconstruct the HGT network among the donor and receptor hosts from the gene and species distance matrices. RHOM is a set of command-line driven programs used to detect HGT in genomes. While T-REX impresses with a user-friendly interface and drawing of the reticulation network, the strength of RHOM is an extensive statistical framework of genome and the graphical display of the estimated sequence position probabilities for the candidate horizontally transferred genes.  相似文献   

6.
Lateral genetic transfer (LGT) is an important adaptive force in evolution, contributing to metabolic, physiological and ecological innovation in most prokaryotes and some eukaryotes. Genomic sequences and other data have begun to illuminate the processes, mechanisms, quantitative extent and impact of LGT in diverse organisms, populations, taxa and environments; deep questions are being posed, and the provisional answers sometimes challenge existing paradigms. At the same time, there is an enhanced appreciation of the imperfections, biases and blind spots in the data and in analytical approaches. Here we identify and consider significant open questions concerning the role of LGT in genome evolution.  相似文献   

7.
Horizontal gene transfer (HGT) spreads genetic diversity by moving genes across species boundaries. By rapidly introducing newly evolved genes into existing genomes, HGT circumvents the slow step of ab initio gene creation and accelerates genome innovation. However, HGT can only affect organisms that readily exchange genes (exchange communities). In order to define exchange communities and understand the internal and external environmental factors that regulate HGT, we analyzed approximately 20,000 genes contained in eight free-living prokaryotic genomes. These analyses indicate that HGT occurs among organisms that share similar factors. The most significant are genome size, genome G/C composition, carbon utilization, and oxygen tolerance.  相似文献   

8.
9.
According to the scientific literature, it is reasonable to consider that lateral transfer of genes is an usual mechanism of adaptation of the biological organisms to environmental stresses. Furthermore, from bacteria to cultured human cells, including fungi and plants, a large diversity of horizontal gene transfers—natural or artificial, experimental or deduced from sequence analysis—have been described. Therefore, the uncharacterized biodiversity—particularly in microbiology—associated with the universality of the horizontal gene transfer phenomenon leads to the consideration that dissemination of DNA from Genetically Modified Organisms (GMO) in biological environments, including food and soil, is uncontrolled and predictable.  相似文献   

10.
Lateral gene transfer (LGT) is considered as one of the drivers in bacterial genome evolution, usually associated with increased fitness and/or changes in behavior, especially if one considers pathogenic vs. non-pathogenic bacterial groups. The genomes of two phytopathogens, Xanthomonas campestris pv. campestris and Xanthomonas axonopodis pv. citri, were previously inspected for genome islands originating from LGT events, and, in this work, potentially early and late LGT events were identified according to their altered nucleotide composition. The biological role of the islands was also assessed, and pathogenicity, virulence and secondary metabolism pathways were functions highly represented, especially in islands that were found to be recently transferred. However, old islands are composed of a high proportion of genes related to cell primary metabolic functions. These old islands, normally undetected by traditional atypical composition analysis, but confirmed as product of LGT by atypical phylogenetic reconstruction, reveal the role of LGT events by replacing core metabolic genes normally inherited by vertical processes.  相似文献   

11.
In Gram-negative bacteria, the O-antigen-encoding genes may be transferred between lineages, although mechanisms are not fully understood. To assess possible lateral gene transfer (LGT), 21 Argentinean Vibrio cholerae O-group 1 (O1) isolates were examined using multilocus sequence typing (MLST) to determine the genetic relatedness of housekeeping genes and genes from the O1 gene cluster. MSLT analysis revealed that 4.4% of the nucleotides in the seven housekeeping loci were variable, with six distinct genetic lineages identified among O1 isolates. In contrast, MLST analysis of the eight loci from the O1 serogroup region revealed that 0.24% of the 4943 nucleotides were variable. A putative breakpoint was identified in the JUMPstart sequence. Nine conserved nucleotides differed by a single nucleotide from a DNA uptake signal sequence (USS) also found in Pastuerellaceae . Our data indicate that genes in the O1 biogenesis region are closely related even in distinct genetic lineages, indicative of LGT, with a putative DNA USS identified at the defined boundary for the DNA exchange.  相似文献   

12.
The past decade has produced an increasing number of reports on horizontal gene transfer between prokaryotic organisms. Only recently, with the flood of available whole genome sequence data and a renewed intensity of the debate about the universal tree of life, a very few reports on lateral gene transfer (LGT) from prokaryotes into the Eukaryota have been published. We have investigated and report here on the molecular evolution of the gene families that encode catalatic hydroperoxidases. We have found that this process included not only frequent horizontal gene transfer among prokaryotes but also several lateral gene transfer events between bacteria and fungi and between bacteria and the protistan ancestor of the alga/plant lineage.  相似文献   

13.
14.
15.
16.
The number of cases of lateral or horizontal gene transfer ineukaryotic genomes is growing steadily, but in most cases, neitherthe donor nor the recipient is known, and the biological implicationsof the transfer are not clear. We describe a relatively well-definedcase of transfer from a cyanobacterial source to an ancestorof dinoflagellates that diverged before Oxyrrhis but after Perkinsus.This case is also exceptional in that 2 adjacent genes, a paralogueof the shikimate biosynthetic enzyme AroB and an O-methyltransferase(OMT) were transferred together and formed a fusion proteinthat was subsequently targeted to the dinoflagellate plastid.Moreover, this fusion subsequently reverted to 2 individualgenes in the genus Karlodinium, but both proteins maintainedplastid localization with the OMT moiety acquiring its own plastid-targetingpeptide. The presence of shikimate biosynthetic enzymes in theplastid is not unprecedented as this is a plastid-based pathwayin many eukaryotes, but this species of OMT has not been associatedwith the plastid previously. It appears that the OMT activitywas drawn into the plastid simply by virtue of its attachmentto the AroB paralogue resulting from their cotransfer and oncein the plastid performed some essential function so that itremained plastid targeted after it separated from AroB. Genefusion events are considered rare and likely stable, and suchan event has recently been used to argue for a root of the eukaryotictree. Our data, however, show that exact reversals of fusionevents do take place, and hence gene fusion data are difficultto interpret without knowledge of the phylogeny of the organisms—thereforetheir use as phylogenetic markers must be considered carefully.  相似文献   

17.
Lateral gene transfer has emerged as an important force in bacterial evolution. A substantial number of genes can be inserted into or deleted from genomes through the process of lateral transfer. In this study, we looked for atypical occurrence of genes among related organisms to detect laterally transferred genes. We have analyzed 50 bacterial complete genomes from nine groups. For each group we use a 16s rRNA phylogeny and a comparison of protein similarity to map gene insertions/deletions onto their species phylogeny. The results reveal that there is poor correlation of genes inserted, deleted, and duplicated with evolutionary branch length. In addition, the numbers of genes inserted, deleted, or duplicated within the same branch are not always correlated with each other. Nor is there any similarity within groups. For example, in the Rhizobiales group, the ratio of insertions to deletions in the evolutionary branch leading to Agrobacterium tumefaciens str. C58 (Cereon) is 0.52, but it is 39.52 for Mesorhizobium loti. Most strikingly, the number of insertions of foreign genes is much larger in the external branches of the trees. These insertions also greatly outnumber the occurrence of deletions, and yet the genome sizes of these bacteria remain roughly constant. This indicates that many of the insertions are specific to each organism and are lost before related species can evolve. Simulations of the process of insertion and deletion, tailored to each phylogeny, support this conclusion.  相似文献   

18.
Arthrospira platensis is a multi-cellular and filamentous non-N2-fixing cyanobacterium that is capable of performing oxygenic photosynthesis. In this study, we determined the nearly complete genome sequence of A. platensis YZ. A. platensis YZ genome is a single, circular chromosome of 6.62 Mb in size. Phylogenetic and comparative genomic analyses revealed that A. platensis YZ was more closely related to A. platensis NIES-39 than Arthrospira sp. PCC 8005 and A. platensis C1. Broad gene gains were identified between A. platensis YZ and three other Arthrospira speices, some of which have been previously demonstrated that can be laterally transferred among different species, such as restriction-modification systems-coding genes. Moreover, unprecedented extensive chromosomal rearrangements among different strains were observed. The chromosomal rearrangements, particularly the chromosomal inversions, were analysed and estimated to be closely related to palindromes that involved long inverted repeat sequences and the extensively distributed type IIR restriction enzyme in the Arthrospira genome. In addition, species from genus Arthrospira unanimously contained the highest rate of repetitive sequence compared with the other species of order Oscillatoriales, suggested that sequence duplication significantly contributed to Arthrospira genome phylogeny. These results provided in-depth views into the genomic phylogeny and structural variation of A. platensis, as well as provide a valuable resource for functional genomics studies.  相似文献   

19.
Ribosomal RNA (rRNA) genes are widely utilized in depicting organismal diversity and distribution in a wide range of environments. Although a few cases of lateral transfer of rRNA genes between closely related prokaryotes have been reported, it remains to be reported from eukaryotes. Here, we report the first case of lateral transfer of eukaryotic rRNA genes. Two distinct sequences of the 18S rRNA gene were detected from a clonal culture of the stramenopile, Ciliophrys infusionum. One was clearly derived from Ciliophrys, but the other gene originated from a perkinsid alveolate. Genome-walking analyses revealed that this alveolate-type rRNA gene is immediately adjacent to two protein-coding genes (ubc12 and usp39), and the origin of both genes was shown to be a stramenopile (that is, Ciliophrys) in our phylogenetic analyses. These findings indicate that the alveolate-type rRNA gene is encoded on the Ciliophrys genome and that eukaryotic rRNA genes can be transferred laterally.  相似文献   

20.
Debates over the status of the tree of life (TOL) often proceed without agreement as to what it is supposed to be: a hierarchical classification scheme, a tracing of genomic and organismal history or a hypothesis about evolutionary processes and the patterns they can generate. I will argue that for Darwin it was a hypothesis, which lateral gene transfer in prokaryotes now shows to be false. I will propose a more general and relaxed evolutionary theory and point out why anti-evolutionists should take no comfort from disproof of the TOL hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号