首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Experience can alter how objects are represented in the visual cortex. But experience can take different forms. It is unknown whether the kind of visual experience systematically alters the nature of visual cortical object representations.

Methodology/Principal Findings

We take advantage of different training regimens found to produce qualitatively different types of perceptual expertise behaviorally in order to contrast the neural changes that follow different kinds of visual experience with the same objects. Two groups of participants went through training regimens that required either subordinate-level individuation or basic-level categorization of a set of novel, artificial objects, called “Ziggerins”. fMRI activity of a region in the right fusiform gyrus increased after individuation training and was correlated with the magnitude of configural processing of the Ziggerins observed behaviorally. In contrast, categorization training caused distributed changes, with increased activity in the medial portion of the ventral occipito-temporal cortex relative to more lateral areas.

Conclusions/Significance

Our results demonstrate that the kind of experience with a category of objects can systematically influence how those objects are represented in visual cortex. The demands of prior learning experience therefore appear to be one factor determining the organization of activity patterns in visual cortex.  相似文献   

2.

Background

It is well established that the left inferior frontal gyrus plays a key role in the cerebral cortical network that supports reading and visual word recognition. Less clear is when in time this contribution begins. We used magnetoencephalography (MEG), which has both good spatial and excellent temporal resolution, to address this question.

Methodology/Principal Findings

MEG data were recorded during a passive viewing paradigm, chosen to emphasize the stimulus-driven component of the cortical response, in which right-handed participants were presented words, consonant strings, and unfamiliar faces to central vision. Time-frequency analyses showed a left-lateralized inferior frontal gyrus (pars opercularis) response to words between 100–250 ms in the beta frequency band that was significantly stronger than the response to consonant strings or faces. The left inferior frontal gyrus response to words peaked at ∼130 ms. This response was significantly later in time than the left middle occipital gyrus, which peaked at ∼115 ms, but not significantly different from the peak response in the left mid fusiform gyrus, which peaked at ∼140 ms, at a location coincident with the fMRI–defined visual word form area (VWFA). Significant responses were also detected to words in other parts of the reading network, including the anterior middle temporal gyrus, the left posterior middle temporal gyrus, the angular and supramarginal gyri, and the left superior temporal gyrus.

Conclusions/Significance

These findings suggest very early interactions between the vision and language domains during visual word recognition, with speech motor areas being activated at the same time as the orthographic word-form is being resolved within the fusiform gyrus. This challenges the conventional view of a temporally serial processing sequence for visual word recognition in which letter forms are initially decoded, interact with their phonological and semantic representations, and only then gain access to a speech code.  相似文献   

3.

Background

Adults with bipolar disorder (BD) have cognitive impairments that affect face processing and social cognition. However, it remains unknown whether these deficits in euthymic BD have impaired brain markers of emotional processing.

Methodology/Principal Findings

We recruited twenty six participants, 13 controls subjects with an equal number of euthymic BD participants. We used an event-related potential (ERP) assessment of a dual valence task (DVT), in which faces (angry and happy), words (pleasant and unpleasant), and face-word simultaneous combinations are presented to test the effects of the stimulus type (face vs word) and valence (positive vs. negative). All participants received clinical, neuropsychological and social cognition evaluations. ERP analysis revealed that both groups showed N170 modulation of stimulus type effects (face > word). BD patients exhibited reduced and enhanced N170 to facial and semantic valence, respectively. The neural source estimation of N170 was a posterior section of the fusiform gyrus (FG), including the face fusiform area (FFA). Neural generators of N170 for faces (FG and FFA) were reduced in BD. In these patients, N170 modulation was associated with social cognition (theory of mind).

Conclusions/Significance

This is the first report of euthymic BD exhibiting abnormal N170 emotional discrimination associated with theory of mind impairments.  相似文献   

4.

Background

A key aspect of representations for object recognition and scene analysis in the ventral visual stream is the spatial frame of reference, be it a viewer-centered, object-centered, or scene-based coordinate system. Coordinate transforms from retinocentric space to other reference frames involve combining neural visual responses with extraretinal postural information.

Methodology/Principal Findings

We examined whether such spatial information is available to anterior inferotemporal (AIT) neurons in the macaque monkey by measuring the effect of eye position on responses to a set of simple 2D shapes. We report, for the first time, a significant eye position effect in over 40% of recorded neurons with small gaze angle shifts from central fixation. Although eye position modulates responses, it does not change shape selectivity.

Conclusions/Significance

These data demonstrate that spatial information is available in AIT for the representation of objects and scenes within a non-retinocentric frame of reference. More generally, the availability of spatial information in AIT calls into questions the classic dichotomy in visual processing that associates object shape processing with ventral structures such as AIT but places spatial processing in a separate anatomical stream projecting to dorsal structures.  相似文献   

5.

Background

Previous fMRI studies show that women with eating disorders (ED) have differential neural activation to viewing food images. However, despite clinical differences in their responses to food, differential neural activation to thinking about eating food, between women with anorexia nervosa (AN) and bulimia nervosa (BN) is not known.

Methods

We compare 50 women (8 with BN, 18 with AN and 24 age-matched healthy controls [HC]) while they view food images during functional Magnetic Resonance Imaging (fMRI).

Results

In response to food (vs non-food) images, women with BN showed greater neural activation in the visual cortex, right dorsolateral prefrontal cortex, right insular cortex and precentral gyrus, women with AN showed greater activation in the right dorsolateral prefrontal cortex, cerebellum and right precuneus. HC women activated the cerebellum, right insular cortex, right medial temporal lobe and left caudate. Direct comparisons revealed that compared to HC, the BN group showed relative deactivation in the bilateral superior temporal gyrus/insula, and visual cortex, and compared to AN had relative deactivation in the parietal lobe and dorsal posterior cingulate cortex, but greater activation in the caudate, superior temporal gyrus, right insula and supplementary motor area.

Conclusions

Women with AN and BN activate top-down cognitive control in response to food images, yet women with BN have increased activation in reward and somatosensory regions, which might impinge on cognitive control over food consumption and binge eating.  相似文献   

6.
Balas B  Cox D  Conwell E 《PloS one》2007,2(11):e1223

Background

Previous studies have explored the effects of familiarity on various kinds of visual face judgments, yet the role of familiarity in face processing is not fully understood. Across different face judgments and stimulus sets, the data is equivocal as to whether or not familiarity impacts recognition processes.

Methodology/Principal Findings

Here, we examine the effect of real-world personal familiarity in three simple delayed-match-to-sample tasks in which subjects were required to match faces on the basis of orientation (upright v. inverted), gender and identity. We find that subjects had a significant speed advantage with familiar faces in all three tasks, with large effects for the gender and identity matching tasks.

Conclusion/Significance

Our data indicates that real-world experience with a face exerts a powerful influence on face processing in tasks where identity information is irrelevant, even in tasks that could in principle be solved via low-level cues. These results underscore the importance of experience in shaping visual recognition processes.  相似文献   

7.

Background

Thyroid fine needle aspiration cytology (FNAC) is the standard diagnostic modality for thyroid nodules. However, it has limitations among which is the incidence of non-diagnostic results (Thy1). Management of cases with repeatedly non-diagnostic FNAC ranges from simple observation to surgical intervention. We aim to evaluate the incidence of malignancy in non-diagnostic FNAC, and the success rate of repeated FNAC. We also aim to evaluate risk factors for malignancy in patients with non-diagnostic FNAC.

Materials and Methods

Retrospective analyses of consecutive cases with thyroid non diagnostic FNAC results were included.

Results

Out of total 1657 thyroid FNAC done during the study period, there were 264 (15.9%) non-diagnostic FNAC on the first attempt. On repeating those, the rate of a non-diagnostic result on second FNAC was 61.8% and on third FNAC was 47.2%. The overall malignancy rate in Thy1 FNAC was 4.5% (42% papillary, 42% follicular and 8% anaplastic), and the yield of malignancy decreased considerably with successive non-diagnostic FNAC. Ultrasound guidance by an experienced head neck radiologist produced the lowest non-diagnostic rate (38%) on repetition compared to US guidance by a generalist radiologist (65%) and by non US guidance (90%).

Conclusions

There is a low risk of malignancy in patients with a non-diagnostic FNAC result, commensurate to the risk of any nodule. The yield of malignancy decreased considerably with successive non-diagnostic FNAC.  相似文献   

8.

Background

Abnormalities in large-scale, structural and functional brain connectivity have been increasingly reported in patients with major depressive disorder (MDD). However, MDD-related alterations in functional interaction between the cerebral hemispheres are still not well understood. Resting state fMRI, which reveals spontaneous neural fluctuations in blood oxygen level dependent signals, provides a means to detect interhemispheric functional coherence. We examined the resting state functional connectivity (RSFC) between the two hemispheres and its relationships with clinical characteristics in MDD patients using a recently proposed measurement named “voxel-mirrored homotopic connectivity (VMHC)”.

Methodology/Principal Findings

We compared the interhemispheric RSFC, computed using the VMHC approach, of seventeen first-episode drug-naive patients with MDD and seventeen healthy controls. Compared to the controls, MDD patients showed significant VMHC decreases in the medial orbitofrontal gyrus, parahippocampal gyrus, fusiform gyrus, and occipital regions including the middle occipital gyrus and cuneus. In MDD patients, a negative correlation was found between VMHC of the fusiform gyrus and illness duration. Moreover, there were several regions whose VMHC showed significant negative correlations with the severity of cognitive disturbance, including the prefrontal regions, such as middle and inferior frontal gyri, and two regions in the cereballar crus.

Conclusions/Significance

These findings suggest that the functional coordination between homotopic brain regions is impaired in MDD patients, thereby providing new evidence supporting the interhemispheric connectivity deficits of MDD. The significant correlations between the VMHC and clinical characteristics in MDD patients suggest potential clinical implication of VMHC measures for MDD. Interhemispheric RSFC may serve as a useful screening method for evaluating MDD where neural connectivity is implicated in the pathophysiology.  相似文献   

9.

Background

Timely decision making is crucial for survival and reproduction. Organisms often face a speed-accuracy trade-off, as fully informed, accurate decisions require time-consuming gathering and treatment of information. Optimal strategies for decision-making should therefore vary depending on the context. In mammals, there is mounting evidence that multiple systems of perceptual discrimination based on different neural circuits emphasize either fast responses or accurate treatment of stimuli depending on the context.

Methodology/Principal Findings

We used the ant Camponotus aethiops to test the prediction that fast information processing achieved through direct neural pathways should be favored in situations where quick reactions are adaptive. Social insects discriminate readily between harmless group-members and dangerous strangers using easily accessible cuticular hydrocarbons as nestmate recognition cues. We show that i) tethered ants display rapid aggressive reactions upon presentation of non-nestmate odor (120 to 160 ms); ii) ants'' aggressiveness towards non-nestmates can be specifically reduced by exposure to non-nestmate odor only, showing that social interactions are not required to alter responses towards non-nestmates; iii) decision-making by ants does not require information transfer between brain hemispheres, but relies on side-specific decision rules.

Conclusions/Significance

Our results strongly suggest that first-order olfactory processing centers (up to the antennal lobes) are likely to play a key role in ant nestmate recognition. We hypothesize that the coarse level of discrimination achieved in the antennal lobes early in odor processing provides enough information to determine appropriate behavioral responses towards non-nestmates. This asks for a reappraisal of the mechanisms underlying social recognition in insects.  相似文献   

10.

Background

Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning.

Methodology/Principal Findings

We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN.

Conclusions/Significance

These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning.  相似文献   

11.

Background

One of the most debated issues in the cognitive neuroscience of language is whether distinct semantic domains are differentially represented in the brain. Clinical studies described several anomic dissociations with no clear neuroanatomical correlate. Neuroimaging studies have shown that memory retrieval is more demanding for proper than common nouns in that the former are purely arbitrary referential expressions. In this study a semantic relatedness paradigm was devised to investigate neural processing of proper and common nouns.

Methodology/Principal Findings

780 words (arranged in pairs of Italian nouns/adjectives and the first/last names of well known persons) were presented. Half pairs were semantically related (“Woody Allen” or “social security”), while the others were not (“Sigmund Parodi” or “judicial cream”). All items were balanced for length, frequency, familiarity and semantic relatedness. Participants were to decide about the semantic relatedness of the two items in a pair. RTs and N400 data suggest that the task was more demanding for common nouns. The LORETA neural generators for the related-unrelated contrast (for proper names) included the left fusiform gyrus, right medial temporal gyrus, limbic and parahippocampal regions, inferior parietal and inferior frontal areas, which are thought to be involved in the conjoined processing a familiar face with the relevant episodic information. Person name was more emotional and sensory vivid than common noun semantic access.

Conclusions/Significance

When memory retrieval is not required, proper name access (conspecifics knowledge) is not more demanding. The neural generators of N400 to unrelated items (unknown persons and things) did not differ as a function of lexical class, thus suggesting that proper and common nouns are not treated differently as belonging to different grammatical classes.  相似文献   

12.
Schaefer M  Heinze HJ  Galazky I 《PloS one》2010,5(12):e15010

Background

The alien hand syndrome is a striking phenomenon characterized by purposeful and autonomous movements that are not voluntarily initiated. This study aimed to examine neural correlates of this rare neurological disorder in a patient with corticobasal degeneration and alien hand syndrome of the left hand.

Methodology/Principal Findings

We employed functional magnetic resonance imaging to investigate brain responses associated with unwanted movements in a case study. Results revealed that alien hand movements involved a network of brain activations including the primary motor cortex, premotor cortex, precuneus, and right inferior frontal gyrus. Conscious and voluntary movements of the alien hand elicited a similar network of brain responses but lacked an activation of the inferior frontal gyrus. The results demonstrate that alien and unwanted movements may engage similar brain networks than voluntary movements, but also imply different functional contributions of prefrontal areas. Since the inferior frontal gyrus was uniquely activated during alien movements, the results provide further support for a specific role of this brain region in inhibitory control over involuntary motor responses.

Conclusions/Significance

We discuss the outcome of this study as providing evidence for a distributed neural network associated with unwanted movements in alien hand syndrome, including brain regions known to be related to movement execution and planning as well as areas that have been linked to inhibition control (inferior frontal gyrus) and experience of agency (precuneus).  相似文献   

13.

Background

It is currently believed that face processing predominantly activates the right hemisphere in humans, but available literature is very inconsistent.

Methodology/Principal Findings

In this study, ERPs were recorded in 50 right-handed women and men in response to 390 faces (of different age and sex), and 130 technological objects. Results showed no sex difference in the amplitude of N170 to objects; a much larger face-specific response over the right hemisphere in men, and a bilateral response in women; a lack of face-age coding effect over the left hemisphere in men, with no differences in N170 to faces as a function of age; a significant bilateral face-age coding effect in women.

Conclusions/Significance

LORETA reconstruction showed a significant left and right asymmetry in the activation of the fusiform gyrus (BA19), in women and men, respectively. The present data reveal a lesser degree of lateralization of brain functions related to face coding in women than men. In this light, they may provide an explanation of the inconsistencies in the available literature concerning the asymmetric activity of left and right occipito-temporal cortices devoted to face perception during processing of face identity, structure, familiarity or affective content.  相似文献   

14.

Objectives

In the search for neurobiological correlates of depression, a major finding is hyperactivity in limbic-paralimbic regions. However, results so far have been inconsistent, and the stimuli used are often unspecific to depression. This study explored hemodynamic responses of the brain in patients with depression while processing individualized and clinically derived stimuli.

Methods

Eighteen unmedicated patients with recurrent major depressive disorder and 17 never-depressed control subjects took part in standardized clinical interviews from which individualized formulations of core interpersonal dysfunction were derived. In the patient group such formulations reflected core themes relating to the onset and maintenance of depression. In controls, formulations reflected a major source of distress. This material was thereafter presented to subjects during functional magnetic resonance imaging (fMRI) assessment.

Results

Increased hemodynamic responses in the anterior cingulate cortex, medial frontal gyrus, fusiform gyrus and occipital lobe were observed in both patients and controls when viewing individualized stimuli. Relative to control subjects, patients with depression showed increased hemodynamic responses in limbic-paralimbic and subcortical regions (e.g. amygdala and basal ganglia) but no signal decrease in prefrontal regions.

Conclusions

This study provides the first evidence that individualized stimuli derived from standardized clinical interviewing can lead to hemodynamic responses in regions associated with self-referential and emotional processing in both groups and limbic-paralimbic and subcortical structures in individuals with depression. Although the regions with increased responses in patients have been previously reported, this study enhances the ecological value of fMRI findings by applying stimuli that are of personal relevance to each individual''s depression.  相似文献   

15.
Gao Z  Li J  Yin J  Shen M 《PloS one》2010,5(12):e14273

Background

The processing mechanisms of visual working memory (VWM) have been extensively explored in the recent decade. However, how the perceptual information is extracted into VWM remains largely unclear. The current study investigated this issue by testing whether the perceptual information was extracted into VWM via an integrated-object manner so that all the irrelevant information would be extracted (object hypothesis), or via a feature-based manner so that only the target-relevant information would be extracted (feature hypothesis), or via an analogous processing manner as that in visual perception (analogy hypothesis).

Methodology/Principal Findings

High-discriminable information which is processed at the parallel stage of visual perception and fine-grained information which is processed via focal attention were selected as the representatives of perceptual information. The analogy hypothesis predicted that whereas high-discriminable information is extracted into VWM automatically, fine-grained information will be extracted only if it is task-relevant. By manipulating the information type of the irrelevant dimension in a change-detection task, we found that the performance was affected and the ERP component N270 was enhanced if a change between the probe and the memorized stimulus consisted of irrelevant high-discriminable information, but not if it consisted of irrelevant fine-grained information.

Conclusions/Significance

We conclude that dissociated extraction mechanisms exist in VWM for information resolved via dissociated processes in visual perception (at least for the information tested in the current study), supporting the analogy hypothesis.  相似文献   

16.

Background

Long duration of untreated psychosis (DUP) is associated with poor treatment outcome. Whether or not DUP is related to brain gray matter volume abnormalities in antipsychotic medication treatment naïve schizophrenia remains unclear at this time.

Methods

Patients with treatment-naïve schizophrenia and healthy controls went through brain scan using high resolution Magnetic Resonance Imaging. DUP was evaluated using the Nottingham Onset Schedule (NOS), and dichotomized as short DUP (≤ 26 weeks) or long DUP (>26 weeks). Voxel-based methods were used for volumetric measure in the brain.

Results

Fifty-seven patients (27 short DUP and 30 long DUP) and 30 healthy controls were included in the analysis. There were significant gray matter volumetric differences among the 3 groups in bilateral parahippocampus gyri, right superior temporal gyrus, left fusiform gyrus, left middle temporal gyrus, and right superior frontal gyrus (p''s<0.01). Compared with healthy controls, the long DUP group had significantly smaller volume in all these regions (p''s <0.05). Compared with the short-DUP group, the long-DUP group had significantly smaller volume in right superior temporal gyrus, left fusiform gyrus, and left middle temporal gyrus (p''s<0.01).

Conclusion

Our findings suggest that DUP is associated with temporal and occipitotemporal gray matter volume decrease in treatment naïve schizophrenia. The brain structural changes in untreated psychosis might contribute to poor treatment response and long-term prognosis in this patient population.  相似文献   

17.

Background

There appears to be an overlap between the limbic system, which is modulated by subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson''s disease (PD), and the brain network that mediates theory of mind (ToM). Accordingly, the aim of the present study was to investigate the effects of STN DBS on ToM of PD patients and to correlate ToM modifications with changes in glucose metabolism.

Methodology/Principal Findings

To this end, we conducted 18FDG-PET scans in 13 PD patients in pre- and post-STN DBS conditions and correlated changes in their glucose metabolism with modified performances on the Eyes test, a visual ToM task requiring them to describe thoughts or feelings conveyed by photographs of the eye region. Postoperative PD performances on this emotion recognition task were significantly worse than either preoperative PD performances or those of healthy controls (HC), whereas there was no significant difference between preoperative PD and HC. Conversely, PD patients in the postoperative condition performed within the normal range on the gender attribution task included in the Eyes test. As far as the metabolic results are concerned, there were correlations between decreased cerebral glucose metabolism and impaired ToM in several cortical areas: the bilateral cingulate gyrus (BA 31), right middle frontal gyrus (BA 8, 9 and 10), left middle frontal gyrus (BA 6), temporal lobe (fusiform gyrus, BA 20), bilateral parietal lobe (right BA 3 and right and left BA 7) and bilateral occipital lobe (BA 19). There were also correlations between increased cerebral glucose metabolism and impaired ToM in the left superior temporal gyrus (BA 22), left inferior frontal gyrus (BA 13 and BA 47) and right inferior frontal gyrus (BA 47). All these structures overlap with the brain network that mediates ToM.

Conclusion/Significance

These results seem to confirm that STN DBS hinders the ability to infer the mental states of others and modulates a distributed network known to subtend ToM.  相似文献   

18.

Background

Selective visual attention is the process by which the visual system enhances behaviorally relevant stimuli and filters out others. Visual attention is thought to operate through a cortical mechanism known as biased competition. Representations of stimuli within cortical visual areas compete such that they mutually suppress each others'' neural response. Competition increases with stimulus proximity and can be biased in favor of one stimulus (over another) as a function of stimulus significance, salience, or expectancy. Though there is considerable evidence of biased competition within the human visual system, the dynamics of the process remain unknown.

Methodology/Principal Findings

Here, we used scalp-recorded electroencephalography (EEG) to examine neural correlates of biased competition in the human visual system. In two experiments, subjects performed a task requiring them to either simultaneously identify two targets (Experiment 1) or discriminate one target while ignoring a decoy (Experiment 2). Competition was manipulated by altering the spatial separation between target(s) and/or decoy. Both experimental tasks should induce competition between stimuli. However, only the task of Experiment 2 should invoke a strong bias in favor of the target (over the decoy). The amplitude of two lateralized components of the event-related potential, the N2pc and Ptc, mirrored these predictions. N2pc amplitude increased with increasing stimulus separation in Experiments 1 and 2. However, Ptc amplitude varied only in Experiment 2, becoming more positive with decreased spatial separation.

Conclusions/Significance

These results suggest that N2pc and Ptc components may index distinct processes of biased competition—N2pc reflecting visual competitive interactions and Ptc reflecting a bias in processing necessary to individuate task-relevant stimuli.  相似文献   

19.

Background

It is well established that hippocampal activity is positively related to effective associative memory formation. However, in biological systems often optimal levels of activity are contrasted by both sub- and supra-optimal levels. Sub-optimal levels of hippocampal activity are commonly attributed to unsuccessful memory formation, whereas the supra-optimal levels of hippocampal activity related to unsuccessful memory formation have been rarely studied. It is still unclear under what circumstances such supra-optimal levels of hippocampal activity occur. To clarify this issue, we aimed at creating a condition, in which supra-optimal hippocampal activity is associated with encoding failure. We assumed that such supra-optimal activity occurs when task-relevant information is embedded in task-irrelevant, distracting information, which can be considered as noise.

Methodology/Principal Findings

In the present fMRI study, we probed neural correlates of associative memory formation in a full-factorial design with associative memory (subsequently remembered versus forgotten) and noise (induced by high versus low distraction) as factors. Results showed that encoding failure was associated with supra-optimal activity in the high-distraction condition and with sub-optimal activity in the low distraction condition. Thus, we revealed evidence for a bell-shape function relating hippocampal activity with associative encoding success.

Conclusions/Significance

Our findings indicate that intermediate levels of hippocampal activity are optimal while both too low and too high levels appear detrimental for associative memory formation. Supra-optimal levels of hippocampal activity seem to occur when task-irrelevant information is added to task-relevant signal. If such task-irrelevant noise is reduced adequately, hippocampal activity is lower and thus optimal for associative memory formation.  相似文献   

20.

Background

Fluid and effective social communication requires that both face identity and emotional expression information are encoded and maintained in visual short-term memory (VSTM) to enable a coherent, ongoing picture of the world and its players. This appears to be of particular evolutionary importance when confronted with potentially threatening displays of emotion - previous research has shown better VSTM for angry versus happy or neutral face identities.

Methodology/Principal Findings

Using functional magnetic resonance imaging, here we investigated the neural correlates of this angry face benefit in VSTM. Participants were shown between one and four to-be-remembered angry, happy, or neutral faces, and after a short retention delay they stated whether a single probe face had been present or not in the previous display. All faces in any one display expressed the same emotion, and the task required memory for face identity. We find enhanced VSTM for angry face identities and describe the right hemisphere brain network underpinning this effect, which involves the globus pallidus, superior temporal sulcus, and frontal lobe. Increased activity in the globus pallidus was significantly correlated with the angry benefit in VSTM. Areas modulated by emotion were distinct from those modulated by memory load.

Conclusions/Significance

Our results provide evidence for a key role of the basal ganglia as an interface between emotion and cognition, supported by a frontal, temporal, and occipital network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号