首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of giant unilamellar vesicles (GUVs) for investigating the properties of biomembranes is advantageous compared to the use of small-sized vesicles such as large unilamellar vesicles (LUVs). Experimental methods using GUVs, such as the single GUV method, would benefit if there was a methodology for obtaining a large population of similar-sized GUVs composed of oil-free membranes. We here describe a new membrane filtering method for purifying GUVs prepared by the natural swelling method and demonstrate that, following purification of GUVs composed of dioleoylphosphatidylglycerol (DOPG)/dioleoylphosphatidylcholine (DOPC) membranes suspended in a buffer, similar-sized GUVs with diameters of 10–30 μm are obtained. Moreover, this method enabled GUVs to be separated from water-soluble fluorescent probes and LUVs. These results suggest that the membrane filtering method can be applied to GUVs prepared by other methods to purify larger-sized GUVs from smaller GUVs, LUVs, and various water-soluble substances such as proteins and fluorescent probes. This method can also be used for concentration of dilute GUV suspensions.  相似文献   

2.
Giant unilamellar vesicles (GUVs) are widely used as model systems to study both, lipid and membrane protein behavior. During their preparation by the commonly applied electroformation method, a number of issues must be considered to avoid the production of artifacts due to a poor lipid hydration and protein degradation. Here we focus on the effect of preparation temperature on GUVs composed of the most commonly used domain-forming mixture dioleoylelphospatidylcholine/shingomyelin/cholesterol (DOPC/SM/chol) (2/2/1). Lower production temperatures are generally preferable when aiming at a functional reconstitution of proteins into the membrane. On the other hand, lower growth temperature is suspected to alter the lipid composition and the yield of phase-separating vesicles. By confocal imaging, we find that vesicles prepared significantly above and below the melting temperature T(m) have the same overall morphology, similar size distributions of vesicles and a similar area coverage by liquid-ordered (L(o)) domains. However, a large population analysis indeed reveals a different overall yield of phase-separating vesicles. Two-focus scanning fluorescence correlation spectroscopy measurements did not show any divergence of lipid analog mobility in (L(o)) and (L(d)) phases in vesicles prepared at different temperatures, indicating that the lowered growth temperature did not influence the lipid organization within the two phases. Moreover, the expected advantages of lower preparation temperature for proteo-GUVs could be exemplified by the reconstitution of voltage dependent anion channel (VDAC) into DOPC/SM/chol GUVs, which aggregates at high, but not at low preparation temperatures.  相似文献   

3.
Giant unilamellar vesicles (GUVs) are simple model membrane systems of cell-size, which are instrumental to study the function of more complex biological membranes involving heterogeneities in lipid composition, shape, mechanical properties, and chemical properties. We have devised a method that makes it possible to prepare a uniform sample of ternary GUVs of a prescribed composition and heterogeneity by mixing different populations of small unilamellar vesicles (SUVs). The validity of the protocol has been demonstrated by applying it to ternary lipid mixture of DOPC, DPPC, and cholesterol by mixing small unilamellar vesicles (SUVs) of two different populations and with different lipid compositions. The compositional homogeneity among GUVs resulting from SUV mixing is quantified by measuring the area fraction of the liquid ordered–liquid disordered phases in giant vesicles and is found to be comparable to that in GUVs of the prescribed composition produced from hydration of dried lipids mixed in organic solvent. Our method opens up the possibility to quickly increase and manipulate the complexity of GUV membranes in a controlled manner at physiological buffer and temperature conditions. The new protocol will permit quantitative biophysical studies of a whole new class of well-defined model membrane systems of a complexity that resembles biological membranes with rafts.  相似文献   

4.
In recent years, giant unilamellar vesicles (GUVs) have become objects of intense scrutiny by chemists, biologists, and physicists who are interested in the many aspects of biological membranes. In particular, this "cell size" model system allows direct visualization of particular membrane-related phenomena at the level of single vesicles using fluorescence microscopy-related techniques. However, this model system lacks two relevant features with respect to biological membranes: 1), the conventional preparation of GUVs currently requires very low salt concentration, thus precluding experimentation under physiological conditions, and 2), the model system lacks membrane compositional asymmetry. Here we show for first time that GUVs can be prepared using a new protocol based on the electroformation method either from native membranes or organic lipid mixtures at physiological ionic strength. Additionally, for the GUVs composed of native membranes, we show that membrane proteins and glycosphingolipids preserve their natural orientation after electroformation. We anticipate our result to be important to revisit a vast variety of findings performed with GUVs under low- or no-salt conditions. These studies, which include results on artificial cell assembly, membrane mechanical properties, lipid domain formation, partition of membrane proteins into lipid domains, DNA-lipid interactions, and activity of interfacial enzymes, are likely to be affected by the amount of salt present in the solution.  相似文献   

5.
Tea catechins, which are flavonoids and the main components of green tea extracts, are thought to have antibacterial and antioxidant activity. Several studies indicate that lipid membranes are one of the targets of the antibacterial activity of catechins. Studies using a suspension of large unilamellar vesicles (LUVs) indicate that catechin causes gradual leakage of internal contents from LUVs. However, the detailed characteristics of the interaction of catechins with lipid membranes remain unclear. In this study, we investigated the interaction of (-)-epigallocatechin gallate (EGCg), a major catechin in tea extract, with single giant unilamellar vesicles (GUVs) of egg phosphatidylcholine (egg PC) using phase-contrast fluorescence microscopy and the single GUV method. We prepared GUVs of lipid membranes of egg PC in a physiological ion concentration ( approximately 150 mM NaCl) using the polyethylene glycol-lipid method. Low concentrations of EGCg at and above 30 muM induced rapid leakage of a fluorescent probe, calcein, from the inside of single egg PC-GUVs; after the leakage, the GUVs changed into small lumps of lipid membranes. On the other hand, phase-contrast microscopic images revealed the detailed process of the EGCg-induced burst of GUVs, the decrease in their diameter, and their transformation into small lumps. The dependence of the fraction of burst GUVs on EGCg concentration was almost the same as that of the fraction of leaked GUV. This correlation strongly indicates that the leakage of calcein from the inside to the outside of the GUV occurred as a result of the burst of the GUV. The fraction of completely leaked GUV and the fraction of the burst GUV increased with time and also increased with increasing EGCg concentration. We compared the EGCg-induced leakage from single GUVs with EGCg-induced leakage from a LUV suspension. The analysis of the EGCg-induced shape changes shows that the binding of EGCg to the external monolayer of the GUV increases its membrane area, inducing an increase in its surface pressure. Small angle x-ray scattering experiments indicate that the intermembrane distance of multilamellar vesicles of PC membrane greatly decreased at EGCg concentrations above the threshold, suggesting that neighboring membranes came in close contact with each other. On the basis of these results, we discuss the mechanism of the EGCg-induced bursting of vesicles.  相似文献   

6.
Biomimetic systems such as giant unilamellar vesicles (GUVs) are increasingly used for studying protein/lipid interactions due to their size (similar to that of cells) and to their ease of observation by light microscopy techniques. Biophysicists have begun to complexify GUVs to investigate lipid/protein interactions. In particular, composite GUVs have been designed that incorporate lipids that play important physiological roles in cellulo, such as phosphoinositides and among those the most abundant one, phosphatidylinositol(4,5)bisphosphate (PIP2). Fluorescent lipids are often used as tracers to observe GUV membranes by microscopy but they can not bring quantitative information about the insertion of unlabeled lipids. In this study, we carried out ζ-potential measurements to prove the effective incorporation of PIP2 as well as that of phosphatidylserine in the membrane of GUVs prepared by electroformation and to follow the stability of PIP2-containing GUVs. Using confocal microscopy, we found that long-chain (C16) fluorescent PIP2 analogs used as tracers (0.1% of total lipids) show a uniform distribution in the membrane whereas PIP2 antibodies show PIP2 clustering. However, the clustering effect, which is emphasized when tertiary antibodies are used in addition to secondary ones to enhance the size of the detection complex, is artifactual. We showed that divalent ions (Ca2+ and Mg2+) can induce aggregation of PIP2 in the membrane depending on their concentration. Finally, the interaction of ezrin with PIP2-containing GUVs was investigated. Using either labeled ezrin and unlabeled GUVs or both labeled ezrin and GUVs, we showed that clusters of PIP2 and proteins are formed.  相似文献   

7.
Giant unilamellar vesicles (GUVs) containing cholesterol often have a wide distribution in lipid composition. In this study, GUVs of 1,2-dioleoyl-sn-glycero-3-phosphocholine(DOPC)/1,2-distearoyl-sn-glycero-3-phosphocholine(DSPC)/cholesterol and 1,2-diphytanoyl-sn-glycero-3-phosphocholine(diPhyPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine(DPPC)/cholesterol were prepared from dry lipid films using the standard electroformation method as well as a modified method from damp lipid films, which are made from compositional uniform liposomes prepared using the Rapid Solvent Exchange (RSE) method. We quantified the lipid compositional distributions of GUV by measuring the miscibility transition temperature of GUVs using fluorescence microscopy, since a narrower distribution in the transition temperature should correspond to a more uniform distribution in GUV lipid composition. Cholesterol molecules can demix from other lipids in dry state and form cholesterol crystals. Using optical microscopy, micron-sized crystals were observed in some dry lipid films. Thus, a major cause of GUV lipid compositional heterogeneity is the demixing of lipids in the dry film state. By avoiding the dry film state, GUVs prepared from damp lipid films have a better uniformity in lipid composition, and the standard deviations of miscibility transition temperature are about 2.5 times smaller than that of GUVs prepared from dry lipid films. Comparing the two ternary systems, diPhyPC/DPPC/cholesterol GUVs has a larger cholesterol compositional heterogeneity, which directly correlates with the low maximum solubility of cholesterol in diPhyPC lipid bilayers (40.2±0.5mol%) measured by light scattering. Our data indicate that cholesterol interacts far less favorably with diPhyPC than it does with other PCs. The damp lipid film method also has a potential of preparing GUVs from cell membranes containing native proteins without going through a dry state.  相似文献   

8.
We assayed fusion events between giant unilamellar vesicles (GUVs) and budded viruses (BVs) of baculovirus (Autographa californica nucleopolyhedrovirus), the envelopes of which have been labeled with the fluorescent dye Alexa Fluor 488. This involves observing the intensity of fluorescence emitted from the lipid bilayer of single GUVs after fusion using laser scanning microscopy. Using this assay system, we found that fusion between single GUVs and BV envelopes was significantly enhanced at around pH 5.0-6.0, which suggests that: (1) envelope glycoprotein GP64-mediated membrane fusion within the endosome of insect cells was reproduced in our artificial system; (2) acidic phospholipids in GUVs are necessary for this fusion, which are in agreement with the previous results with conventional small liposomes including large unilamellar vesicles and multilamellar vesicles; and (3) the efficiency of fusion is significantly affected by membrane properties that can be modulated by adding cholesterol to GUV lipid bilayers. In addition, the microscopic observation of BV-fused single GUVs showed that a weak interaction occurred between BVs and GUVs containing dioleoylphosphatidylserine at pH 6.0-6.5, and components of BV envelopes were unevenly distributed upon fusion with GUVs containing saturated phospholipid with cholesterol. We further demonstrated that when the recombinant membrane protein, adrenergic β2 receptor, was expressed on recombinant BV envelopes, the protein distribution on BV-fused GUVs was also affected by their lipid contents.  相似文献   

9.
Cells are dynamic systems with complex mechanical properties, regulated by the presence of different species of proteins capable to assemble (and disassemble) into filamentous forms as required by different cells functions. Giant unilamellar vesicles (GUVs) of DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) are systems frequently used as a simplified model of cells because they offer the possibility of assaying separately different stimuli, which is no possible in living cells. Here we present a study of the effect of acting protein on mechanical properties of GUVs, when the protein is inside the vesicles in either monomeric G-actin or filamentous F-actin. For this, rabbit skeletal muscle G-actin is introduced inside GUVs by the electroformation method. Protein polymerization inside the GUVs is promoted by adding to the solution MgCl2 and the ion carrier A23187 to allow the transport of Mg+2 ions into the GUVs. To determine how the presence of actin changes the mechanical properties of GUVs, the vesicles are deformed by the application of an AC electric field in both cases with G-actin and with polymerized F-actin. The changes in shape of the vesicles are characterized by optical microscopy and from them the bending stiffness of the membrane are determined. It is found that G-actin has no appreciable effect on the bending stiffness of DMPC GUVs, but the polymerized actin makes the vesicles more rigid and therefore more resistant to deformations. This result is supported by evidence that actin filaments tend to accumulate near the membrane.  相似文献   

10.
A major component of green tea extracts, catechin (—)-Epigallocatechin gallate (EGCg), has been reported to be biologically active and interacting with membranes. A recent study reported drastic effects of EGCg on giant unilamellar vesicles (GUVs). In particular, EGCg above 30 μM caused GUVs to burst. Here we investigated the effect of EGCg on single GUVs at lower concentrations, believing that its molecular mechanism would be more clearly revealed. We used the micropipette aspiration method, by which the changes of surface area and volume of a GUV could be measured as a result of interaction with EGCg. We also used x-ray diffraction to measure the membrane thinning effect by EGCg. To understand the property of EGCg, we compared its effect with other membrane-active molecules, including pore-forming peptide magainin, the turmeric (curry) extract curcumin, and detergent Triton X100. We found the effect of EGCg somewhat unique. Although EGCg readily binds to lipid bilayers, its membrane area expansion effect is one order of magnitude smaller than curcumin. EGCg also solubilizes lipid molecules from lipid bilayers without forming pores, but its effect is different from that of Triton X100.  相似文献   

11.
We developed a new (to our knowledge) protocol to generate giant unilamellar vesicles (GUVs) composed of mixtures of single lipopolysaccharide (LPS) species and Escherichia coli polar lipid extracts. Four different LPSs that differed in the size of the polar headgroup (i.e., LPS smooth > LPS-Ra > LPS-Rc > LPS-Rd) were selected to generate GUVs composed of different LPS/E. coli polar lipid mixtures. Our procedure consists of two main steps: 1), generation and purification of oligolamellar liposomes containing LPSs; and 2), electroformation of GUVs using the LPS-containing oligolamellar vesicles at physiological salt and pH conditions. Analysis of LPS incorporation into the membrane models (both oligolamellar vesicles and GUVs) shows that the final concentration of LPS is lower than that expected from the initial E. coli lipids/LPS mixture. In particular, our protocol allows incorporation of no more than 15 mol % for LPS-smooth and LPS-Ra, and up to 25 mol % for LPS-Rc and LPS-Rd (with respect to total lipids). We used the GUVs to evaluate the impact of different LPS species on the lateral structure of the host membrane (i.e., E. coli polar lipid extract). Rhodamine-DPPE-labeled GUVs show the presence of elongated micrometer-sized lipid domains for GUVs containing either LPS-Rc or LPS-Rd above 10 mol %. Laurdan GP images confirm this finding and show that this particular lateral scenario corresponds to the coexistence of fluid disordered and gel (LPS-enriched)-like micron-sized domains, in similarity to what is observed when LPS is replaced with lipid A. For LPSs containing the more bulky polar headgroup (i.e., LPS-smooth and LPS-Ra), an absence of micrometer-sized domains is observed for all LPS concentrations explored in the GUVs (up to ∼15 mol %). However, fluorescence correlation spectroscopy (using fluorescently labeled LPS) and Laurdan GP experiments in these microscopically homogeneous membranes suggests the presence of LPS clusters with dimensions below our microscope's resolution (∼380 nm radial). Our results indicate that LPSs can cluster into gel-like domains in these bacterial model membranes, and that the size of these domains depends on the chemical structure and concentration of the LPSs.  相似文献   

12.
To understand the role of sphingomyelinase (SMase) in the function of biological membranes, we have investigated the effect of conversion of sphingomyelin (SM) to ceramide (Cer) on the assembly of domains in giant unilamellar vesicles (GUVs). The GUVs were prepared from mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), N-palmitoly-d-erythro-sphingosine (C16Cer), N-palmitoyl-d-erythro-sphingosylphosphorylcholine (C16SM) and cholesterol. The amounts of DOPC, sum of C16Cer and C16SM, and cholesterol were kept constant (the ratio of these four lipids is shown as 1:X:1-X:1 (molar ratio), i.e., X is C16Cer/(C16Cer + C16SM)). Shape and distribution of domains formed in the GUVs were monitored by a fluorescent lipid, Texas Red 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (0.1 mol%). In GUVs containing low C16Cer (X = 0 and 0.25), round-shaped domains labeled by the fluorescent lipid were present, suggesting coexistence of liquid-ordered and disordered domains. In GUVs containing intermediate Cer concentration (X = 0.5), the fluorescent domain covered most of GUV surface, which was surrounded by gel-like domains. Differential scanning calorimetry of multilamellar vesicles prepared in the presence of higher Cer concentration (X ≥ 0.5) suggested existence of a Cer-enriched gel phase. Video microscopy showed that the enzymatic conversion of SM to Cer caused rapid change in the domain structure: several minutes after the SMase addition, the fluorescent region spread over the GUV surface, within which regions with darker contrast existed. Image-based measurement of generalized polarization (GP) of 6-dodecanoyl-2-dimethylaminonaphthalene (Laurdan), which is related to the acyl chain ordering of the lipids, was performed. Before the SMase treatment domains with high (0.65) and low (below 0.4) GP values coexisted, presumably reflecting the liquid-ordered and disordered domains; after the SMase treatment regions with intermediate GP values (0.5) and smaller regions with higher GP values (0.65) were present. Generation of Cer thus caused a phase transition from liquid-ordered and disordered phases to a gel and liquid phase.  相似文献   

13.
Raft formation and enlargement was investigated in liposomes and supported bilayers prepared from sphingomyelin (SM), cholesterol, and unsaturated phospholipids; NBD-DPPE and rhodamine-(DOPE) were employed as fluorescent probes. Rafts were created by lowering temperature. Maintaining 20 mol % SM, fluorescence microscopy showed that, in the absence of photooxidation, large rafts did not form in giant unilamellar vesicles (GUVs) containing 20 or more mol % cholesterol. But if photooxidation was allowed to proceed, large rafts were readily observed. In population, cuvette experiments, small rafts formed without photooxidation at high cholesterol concentrations. Thus, photooxidation was the cause of raft enlargement during microscopy experiments. Because photooxidation results in peroxidation at lipid double bonds, photosensitization experiments were performed to explicitly produce peroxides of SM and an unsaturated phospholipid. GUVs of high cholesterol content containing the breakdown products of SM-peroxide, but not phospholipid-peroxide, resulted in large rafts after lowering temperature. In addition, GUV production by electroswelling can result in peroxides that cause large raft formation. The use of titanium electrodes eliminates this problem. In conclusion, lipid peroxides and their breakdown products are the cause of large raft formation in GUVs containing biological levels of cholesterol. It is critical that experiments investigating rafts in bilayer membranes avoid the production of peroxides.  相似文献   

14.
We report a novel analytical procedure to measure the surface areas of coexisting lipid domains in giant unilamellar vesicles (GUVs) based on image processing of 3D fluorescence microscopy data. The procedure involves the segmentation of lipid domains from fluorescent image stacks and reconstruction of 3D domain morphology using active surface models. This method permits the reconstruction of the spherical surface of GUVs and determination of the area fractions of coexisting lipid domains at the level of single vesicles. Obtaining area fractions enables the scrutiny of the lever rule along lipid phase diagram's tie lines and to test whether or not the coexistence of lipid domains in GUVs correspond to equilibrium thermodynamic phases. The analysis was applied to DLPC/DPPC GUVs displaying coexistence of lipid domains. Our results confirm the lever rule, demonstrating that the observed membrane domains correspond to equilibrium thermodynamic phases (i.e., solid ordered and liquid disordered phases). In addition, the fact that the lever rule is validated from 11 to 14 randomly selected GUVs per molar fraction indicates homogeneity in the lipid composition among the explored GUV populations. In conclusion, our study shows that GUVs are reliable model systems to perform equilibrium thermodynamic studies of membranes.  相似文献   

15.
In this study we provide the first evidence of the interaction of a truncated-TRAF2 with lipid raft microdomains. We have analyzed this interaction by measuring the diffusion coefficient of the protein in large and giant unilamellar vesicles (LUVs and GUVs, respectively) obtained both from synthetic lipid mixtures and from natural extracts. Steady-state fluorescence measurements performed with synthetic vesicles indicate that this truncated form of TRAF2 displays a tighter binding to raft-like LUVs with respect to the control (POPC-containing LUVs), and that this process depends on the protein oligomeric state. Generalized Polarization measurements and spectral phasor analysis revealed that truncated-TRAF2 affects the membrane fluidity, especially when vesicles are heated up at physiological temperature. The addition of nanomolar concentration of TRAF2 in GUVs also seems to exert a mechanical action, as demonstrated by the formation of intraluminal vesicles, a process in which ganglioside GM1 plays a crucial role.  相似文献   

16.
Unilamellar vesicle populations having a narrow size distribution and mean radius below 100 nm are preferred for drug delivery applications. In the present work, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was used to prepare giant unilamellar vesicles (GUVs) by electroformation and multilamellar vesicles (MLVs) by thin film hydration. Our experiments show that in contrast to MLVs, a single-pass extrusion of GUVs through track-etched polycarbonate membranes at moderate pressure differences is sufficient to produce small liposomes having low polydispersity index. Moreover, we observe that the drug encapsulating potential of extruded liposomes obtained from GUVs is significantly higher compared to liposomes prepared by extrusion of MLVs. Furthermore, our experiments carried out for varying membrane pore diameters and extrusion pressures suggest that the size of extruded liposomes is a function of the velocity of GUV suspensions in the membrane pore.  相似文献   

17.
To understand the role of sphingomyelinase (SMase) in the function of biological membranes, we have investigated the effect of conversion of sphingomyelin (SM) to ceramide (Cer) on the assembly of domains in giant unilamellar vesicles (GUVs). The GUVs were prepared from mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), N-palmitoly-D-erythro-sphingosine (C16Cer), N-palmitoyl-D-erythro-sphingosylphosphorylcholine (C16SM) and cholesterol. The amounts of DOPC, sum of C16Cer and C16SM, and cholesterol were kept constant (the ratio of these four lipids is shown as 1:X:1-X:1 (molar ratio), i.e., X is C16Cer/(C16Cer+C16SM)). Shape and distribution of domains formed in the GUVs were monitored by a fluorescent lipid, Texas Red 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (0.1 mol%). In GUVs containing low C16Cer (X=0 and 0.25), round-shaped domains labeled by the fluorescent lipid were present, suggesting coexistence of liquid-ordered and disordered domains. In GUVs containing intermediate Cer concentration (X=0.5), the fluorescent domain covered most of GUV surface, which was surrounded by gel-like domains. Differential scanning calorimetry of multilamellar vesicles prepared in the presence of higher Cer concentration (X>or=0.5) suggested existence of a Cer-enriched gel phase. Video microscopy showed that the enzymatic conversion of SM to Cer caused rapid change in the domain structure: several minutes after the SMase addition, the fluorescent region spread over the GUV surface, within which regions with darker contrast existed. Image-based measurement of generalized polarization (GP) of 6-dodecanoyl-2-dimethylaminonaphthalene (Laurdan), which is related to the acyl chain ordering of the lipids, was performed. Before the SMase treatment domains with high (0.65) and low (below 0.4) GP values coexisted, presumably reflecting the liquid-ordered and disordered domains; after the SMase treatment regions with intermediate GP values (0.5) and smaller regions with higher GP values (0.65) were present. Generation of Cer thus caused a phase transition from liquid-ordered and disordered phases to a gel and liquid phase.  相似文献   

18.
We have developed a strategy to determine lengths and orientations of tie lines in the coexistence region of liquid-ordered and liquid-disordered phases of cholesterol containing ternary lipid mixtures. The method combines confocal-fluorescence-microscopy image stacks of giant unilamellar vesicles (GUVs), a dedicated 3D-image analysis, and a quantitative analysis based in equilibrium thermodynamic considerations. This approach was tested in GUVs composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-palmitoyl-sn-glycero-3-phosphocholine/cholesterol. In general, our results show a reasonable agreement with previously reported data obtained by other methods. For example, our computed tie lines were found to be nonhorizontal, indicating a difference in cholesterol content in the coexisting phases. This new, to our knowledge, analytical strategy offers a way to further exploit fluorescence-microscopy experiments in GUVs, particularly retrieving quantitative data for the construction of three lipid-component-phase diagrams containing cholesterol.  相似文献   

19.
Protocells are believed to consist of a lipid membrane and encapsulated nucleic acid. As the lipid membrane is impermeable to macromolecules like nucleic acids, the processes by which nucleic acids become encapsulated inside lipid membrane compartments are still unknown. In this paper, a freeze-thaw method was modified and applied to giant unilamellar vesicles (GUVs) and deoxyribonucleic acid (DNA) in mixed solution resulting in the efficient encapsulation of 6.4 kb plasmid DNA and similar length linear DNA into GUVs. The mechanism of encapsulation was followed by observing the effect of freeze-thaw temperatures on GUV morphological change, DNA encapsulation and ice crystal formation, and analyzing their correlation. Following ice crystal formation, the shape of spherical GUVs was altered and membrane integrity was damaged and this was found to be a necessary condition for encapsulation. Heating alone had no effects on DNA encapsulation, but was helpful for restoring the spherical shape and membrane integrity of GUVs damaged during freezing. These results suggested that freeze-thaw could promote the encapsulation of DNA into GUVs by a mechanism: the vesicle membrane was breached by ice crystal formation during freezing, DNA entered into damaged GUVs through these membrane gaps and was encapsulated after the membrane was resealed during the thawing process. The process described herein therefore describes a simple way for the encapsulation of nucleic acids and potentially other macromolecules into lipid vesicles, a process by which early protocells might have formed.  相似文献   

20.
The raft hypothesis proposes that microdomains enriched in sphingolipids, cholesterol, and specific proteins are transiently formed to accomplish important cellular tasks. Equivocally, detergent-resistant membranes were initially assumed to be identical to membrane rafts, because of similarities between their compositions. In fact, the impact of detergents in membrane organization is still controversial. Here, we use phase contrast and fluorescence microscopy to observe giant unilamellar vesicles (GUVs) made of erythrocyte membrane lipids (erythro-GUVs) when exposed to the detergent Triton X-100 (TX-100). We clearly show that TX-100 has a restructuring action on biomembranes. Contact with TX-100 readily induces domain formation on the previously homogeneous membrane of erythro-GUVs at physiological and room temperatures. The shape and dynamics of the formed domains point to liquid-ordered/liquid-disordered (Lo/Ld) phase separation, typically found in raft-like ternary lipid mixtures. The Ld domains are then separated from the original vesicle and completely solubilized by TX-100. The insoluble vesicle left, in the Lo phase, represents around 2/3 of the original vesicle surface at room temperature and decreases to almost 1/2 at physiological temperature. This chain of events could be entirely reproduced with biomimetic GUVs of a simple ternary lipid mixture, 2:1:2 POPC/SM/chol (phosphatidylcholine/sphyngomyelin/cholesterol), showing that this behavior will arise because of fundamental physicochemical properties of simple lipid mixtures. This work provides direct visualization of TX-100-induced domain formation followed by selective (Ld phase) solubilization in a model system with a complex biological lipid composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号