首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolic alterations have been observed in many cancer types. The deregulated metabolism has thus become an emerging hallmark of the disease, where the metabolism is frequently rewired to aerobic glycolysis. This has led to the concept of “metabolic reprogramming”, which has therefore been extensively studied. Over the years, it has been characterized the enhancement of aerobic glycolysis, where key mutations in some of the enzymes of the TCA cycle, and the increased glucose uptake, are used by cancer cells to achieve a “metabolic phenotype” useful to gain a proliferation advantage. Many studies have highlighted in detail the signaling pathways and the molecular mechanisms responsible for the glycolytic switch. However, glycolysis is not the only metabolic process that cancer cells rely on. Oxidative Phosphorylation (OXPHOS), gluconeogenesis or the beta-oxidation of fatty acids (FAO) may be involved in the development and progression of several tumors. In some cases, these metabolisms are even more crucial than aerobic glycolysis for the tumor survival. This review will focus on the contribution of these alterations of metabolism to the development and survival of cancers. We will also analyze the molecular mechanisms by which the balance between these metabolic processes may be regulated, as well as some of the therapeutical approaches that can derive from their study.  相似文献   

2.
Colorectal carcinoma (CRC) is the third most malignant tumor in the world, but the key mechanisms of CRC progression have not been confirmed. UBR5 and PYK2 expression levels were detected by RT-qPCR. The levels of UBR5, PYK2, and mitochondrial oxidative phosphorylation (OXPHOS) complexes were detected by western blot analysis. Flow cytometry was used to detect ROS activity. The CCK-8 assay was used to assess cell proliferation and viability. The interaction between UBR5 and PYK2 was detected by immunoprecipitation. A clone formation assay was used to determine the cell clone formation rate. The ATP level and lactate production of each group of cells were detected by the kit. EdU staining was performed for cell proliferation.Transwell assay was performed for cell migration ability. For the CRC nude mouse model, we also observed and recorded the volume and mass of tumor-forming tumors. The expression of UBR5 and PYK2 was elevated in both CRC and human colonic mucosal epithelial cell lines, and knockdown of UBR5 had inhibitory effects on cancer cell proliferation and cloning and other behaviors in the CRC process by knockdown of UBR5 to downregulate the expression of PYK2, thus inhibiting the OXPHOS process in CRC; rotenone (OXPHOS inhibitor) treatment enhanced all these inhibitory effects. Knockdown of UBR5 can reduce the expression level of PYK2, thus downregulating the OXPHOS process in CRC cell lines and inhibiting the CRC metabolic reprogramming process.  相似文献   

3.
Recent studies suggest that a small subpopulation of malignant cells with stem-like properties is resistant to chemotherapy and may be responsible for the existence of residual cancer after treatment. We have isolated highly tumorigenic cancer cells with 100-fold increase in tumor initiating capacity from the tumor xenografts of human glioblastoma U87 cells in mice. These cells exhibit stem-like properties and show unique energy metabolic characteristics including low mitochondrial respiration, increased glycolysis for ATP generation, and preference for hypoxia to maintain their stemness and tumor forming capacity. Mechanistically, mitochondrial depression in the highly tumorigenic cells occurs mainly at complex II of the electron transport chain with a down-regulation of the succinate dehydrogenase subunit B, leading to deregulation of hypoxia-inducible factors. Under hypoxia, the stem-like cancer cells are resistant to conventional anticancer agents but are sensitive to glycolytic inhibition. Furthermore, combination of glycolytic inhibition with standard therapeutic agents is effective in killing the tumor-initiating cells in vitro and inhibits tumor formation in vivo. Our study suggests that stem-like cancer cells prefer a low oxygen microenvironment and actively utilize the glycolytic pathway for ATP generation. Inhibition of glycolysis may be an effective strategy to eradicate residual cancer stem cells that are otherwise resistant to chemotherapeutic agents in their hypoxic niches.  相似文献   

4.
Overexpression of alpha-synuclein and oxidative stress has been implicated in the neuronal cell death in Parkinson's disease. Alpha-synuclein associates with mitochondria and excessive accumulation of alpha-synuclein causes impairment of mitochondrial functions. However, the mechanism of mitochondrial impairment caused by alpha-synuclein is not fully understood. We recently reported that alpha-synuclein associates with mitochondria and that overexpression of alpha-synuclein causes nitration of mitochondrial proteins and release of cytochrome c from the mitochondria [Parihar M.S., Parihar A., Fujita M., Hashimoto M., Ghafourifar P. Mitochondrial association of alpha-synuclein causes oxidative stress. Cell Mol Life Sci. 2008a;65:1272–1284]. The present study shows that overexpression of alpha-synuclein A53T or A30P mutants or wild-type in human neuroblastoma cells augmented aggregation of alpha-synuclein. Immunoblotting and immuno-gold electron transmission microscopy show localization of alpha-synuclein aggregates within the mitochondria of overexpressing cells. Overexpressing cells show increased mitochondrial reactive oxygen species, increased protein tyrosine nitration, decreased mitochondrial transmembrane potential, and hampered cellular respiration. These findings suggest an important role for mitochondria in cellular responses to alpha-synuclein.  相似文献   

5.
Combined-modality treatment has improved the outcome in cases of various solid tumors, and radiosensitizers are used to enhance the radiotherapeutic efficiency. Rosiglitazone, a synthetic ligand of peroxisome proliferator-activated receptors γ used in the treatment of type-2 diabetes, has been shown to reduce tumor growth and metastasis in human cancer cells, and may have the potential to be used as a radiosensitizer in radiotherapy for human colorectal cancer cells. In this study, rosiglitazone treatment significantly reduced the cell viability of p53-wild type HCT116 cells but not p53-mutant HT-29 cells. Interestingly, rosiglitazone pretreatment enhanced radiosensitivity in p53-mutant HT-29 cells but not HCT116 cells, and prolonged radiation-induced G2/M arrest and enhanced radiation-induced cell growth inhibition in HT-29 cells. Pretreatment with rosiglitazone also suppressed radiation-induced H2AX phosphorylation in response to DNA damage and AKT activation for cell survival; on the contrary, rosiglitazone pretreatment enhanced radiation-induced caspase-8, -9, and -3 activation and PARP cleavage in HT-29 cells. In addition, pretreatment with a pan-caspase inhibitor, zVAD-fmk, attenuated the levels of caspase-3 activation and PARP cleavage in radiation-exposed cancer cells in combination with rosiglitazone pretreatment. Our results provide proof for the first time that rosiglitazone suppresses radiation-induced survival signals and DNA damage response, and enhances the radiation-induced apoptosis signaling cascade. These findings can assist in the development of rosiglitazone as a novel radiosensitizer.  相似文献   

6.
DNA methylation is recognized as one of several epigenetic regulators of gene expression and as potential driver of carcinogenesis through gene-silencing of tumor suppressors and activation of oncogenes. However, abnormal methylation, even of promoter regions, does not necessarily alter gene expression levels, especially if the gene is already silenced, leaving the exact mechanisms of methylation unanswered. Using a large cohort of matching DNA methylation and gene expression samples of colorectal cancer (CRC; n = 77) and normal adjacent mucosa tissues (n = 108), we investigated the regulatory role of methylation on gene expression. We show that on a subset of genes enriched in common cancer pathways, methylation is significantly associated with gene regulation through gene-specific mechanisms. We built two classification models to infer gene regulation in CRC from methylation differences of tumor and normal tissues, taking into account both gene-silencing and gene-activation effects through hyper- and hypo-methylation of CpGs. The classification models result in high prediction performances in both training and independent CRC testing cohorts (0.92<AUC<0.97) as well as in individual patient data (average AUC = 0.82), suggesting a robust interplay between methylation and gene regulation. Validation analysis in other cancerous tissues resulted in lower prediction performances (0.69<AUC<0.90); however, it identified genes that share robust dependencies across cancerous tissues. In conclusion, we present a robust classification approach that predicts the gene-specific regulation through DNA methylation in CRC tissues with possible transition to different cancer entities. Furthermore, we present HMGA1 as consistently associated with methylation across cancers, suggesting a potential candidate for DNA methylation targeting cancer therapy.  相似文献   

7.
The effects of α-pinene, which is one of the major components of essential oils of several aromatic species, on energy metabolism of mitochondria isolated from maize (Zea mays L.) coleoptiles and primary roots were investigated. α-Pinene exerted similar effects on oxygen consumption irrespective of the source of mitochondria or of the substrate (L-malate, succinate or NADH). At concentrations lower than 250 μM, α-pinene stimulated respiration in state IV and inhibited respiration in state III. At higher concentrations the effect of α-pinene on state IV respiration was shifted toward inhibition. Complete suppression of respiratory control ratio was evident at α-pinene concentrations higher than 100 μM. When mitochondria were uncoupled with carbonyl cyanide 4-trifluoromethoxyphenyl-hydrazone (FCCP), α-pinene caused only inhibition of respiration. In the presence of α-pinene, the transmembrane potential was decreased as indicated by changes in the safranine binding by energized mitochondria. α-Pinene did not affect the activities of succinate dehydrogenase (EC 1.3.5.1) and L-malate dehydrogenase (L-malate:NAD+ oxidoreductase; EC 1.1.1.37). The results indicate that α-pinene acts by at least two mechanisms: uncoupling of oxidative phosphorylation and inhibition of electron transfer. Confirming the impairment of mitochondrial energy metabolism, α-pinene strongly inhibited mitochondrial ATP production. It is apparent that the actions of α-pinene on isolated mitochondria are consequences of unspecific disturbances in the inner mitochondrial membrane.  相似文献   

8.
Metabolic reprogramming from mitochondrial aerobic respiration to aerobic glycolysis is a hallmark of cancer. However, whether it is caused by a dysfunction in the oxidative phosphorylation pathway is still under debate. In this work, we have analyzed the bioenergetic cellular (BEC) index and the relative cell ability to grow in the presence of either galactose or glucose as sources of sugar (Gal/Glu index) of a system formed by four epidermal cell lines with increasing tumorigenic potentials, ranging from nontumorigenic to highly malignant. We find that the BEC index gradually decreases whereas the Gal/Glu index increases with tumorigenicity, indicating that a progressive metabolic adaptation to aerobic glycolysis occurs in tumor cells associated with malignancy. Interestingly, this metabolic adaptation does not appear to be caused by damaged respiration, since the expression and activity of components of the respiratory chain complexes were unchanged in the cell lines. Moreover, the corresponding mitochondrial ATP synthetic abilities of the cell lines were found similar. The production of reactive oxygen species was also measured. A shift in ROS generation was found when compared nontumorigenic with tumorigenic cell lines, the latter exhibiting about threefold higher ROS levels than nontumorigenic cells. This result indicates that oxidative stress is an early event during tumor progression.  相似文献   

9.
Plants reconfigure their metabolic network under stress conditions. Changes of mitochondrial metabolism such as tricarboxylic acid (TCA) cycle and amino acid metabolism are reported in Arabidopsis roots but the exact molecular basis underlying this remains unknown. We here hypothesise the reassembly of enzyme protein complexes to be a molecular mechanism for metabolic regulation and tried in the present study to find out mitochondrial protein complexes which change their composition under oxidative stress by the combinatorial approach of proteomics and metabolomics. Arabidopsis seedlings were treated with menadione to induce oxidative stress. The inhibition of several TCA cycle enzymes and the oxidised NADPH pool indicated the onset of oxidative stress. In blue native/SDS-PAGE analysis of mitochondrial protein complexes the intensities of 18 spots increased and those of 13 spots decreased in menadione treated samples suggesting these proteins associate with, or dissociate from, protein complexes. Some spots were identified as metabolic enzymes related to central carbon metabolism such as malic enzyme, glyceraldehyde-3-phosphate dehydrogenase, monodehydroascorbate reductase and alanine aminotransferase. The change in spot intensity was not directly correlated to the total enzyme activity and mRNA level of the corresponding enzyme but closely related to the metabolite profile, suggesting the metabolism is regulated under oxidative stress at a higher level than translation. These results are somewhat preliminary but suggest the regulation of the TCA cycle, glycolysis, ascorbate and amino acid metabolism by reassembly of plant enzyme complexes.  相似文献   

10.
The main focus of this investigation is steady state kinetics of regulation of mitochondrial respiration in permeabilized cardiomyocytes in situ. Complete kinetic analysis of the regulation of respiration by mitochondrial creatine kinase was performed in the presence of pyruvate kinase and phosphoenolpyruvate to simulate interaction of mitochondria with glycolytic enzymes. Such a system analysis revealed striking differences in kinetic behaviour of the MtCK-activated mitochondrial respiration in situ and in vitro. Apparent dissociation constants of MgATP from its binary and ternary complexes with MtCK, Kia and Ka (1.94 ± 0.86 mM and 2.04 ± 0.14 mM, correspondingly) were increased by several orders of magnitude in situ in comparison with same constants in vitro (0.44 ± 0.08 mM and 0.016 ± 0.01 mM, respectively). Apparent dissociation constants of creatine, Kib and Kb (2.12 ± 0.21 mM 2.17 ± 0.40 Mm, correspondingly) were significantly decreased in situ in comparison with in vitro mitochondria (28 ± 7 mM and 5 ± 1.2 mM, respectively). Dissociation constant for phosphocreatine was not changed. These data may indicate selective restriction of metabolites' diffusion at the level of mitochondrial outer membrane. It is concluded that mechanisms of the regulation of respiration and energy fluxes in vivo are system level properties which depend on intracellular interactions of mitochondria with cytoskeleton, intracellular MgATPases and cytoplasmic glycolytic system.  相似文献   

11.
The primary features of cancer are maintained via intrinsically modified metabolic activity, which is characterized by enhanced nutrient supply, energy production, and biosynthetic activity to synthesize a variety of macromolecular components during each passage through the cell cycle. This metabolic shift in transformed cells, as compared with non-proliferating cells, involves aberrant activation of aerobic glycolysis, de novo lipid biosynthesis and glutamine-dependent anaplerosis to fuel robust cell growth and proliferation. Here, we discuss the unique metabolic characteristics of cancer, the constitutive regulation of metabolism through a variety of signal transduction pathways and/or enzymes involved in metabolic reprogramming in cancer cells, and their implications in cancer diagnosis and therapy.  相似文献   

12.
13.
Cancer cell metabolism is largely controlled by oncogenic signals and nutrient availability. Here, we highlighted that the glucocorticoid-induced leucine zipper (GILZ), an intracellular protein influencing many signaling pathways, reprograms cancer cell metabolism to promote proliferation. We provided evidence that GILZ overexpression induced a significant increase of mitochondrial oxidative phosphorylation as evidenced by the augmentation in basal respiration, ATP-linked respiration as well as respiratory capacity. Pharmacological inhibition of glucose, glutamine and fatty acid oxidation reduced the activation of GILZ-induced mitochondrial oxidative phosphorylation. At glycolysis level, GILZ-overexpressing cells enhanced the expression of glucose transporters in their plasmatic membrane and showed higher glycolytic reserve. 1H NMR metabolites quantification showed an up-regulation of amino acid biosynthesis. The GILZ-induced metabolic reprograming is present in various cancer cell lines regardless of their driver mutations status and is associated with higher proliferation rates persisting under metabolic stress conditions. Interestingly, high levels of OXPHOS made GILZ-overexpressing cells vulnerable to cell death induced by mitochondrial pro-oxidants. Altogether, these data indicate that GILZ reprograms cancer metabolism towards mitochondrial OXPHOS and sensitizes cancer cells to mitochondria-targeted drugs with pro-oxidant activities.  相似文献   

14.
Cancer cells perform their malicious activities through own cell membranes that screen and transmit inhibitory and stimulatory signals out of the cells and into them. This work is focused on changes of phospholipids content (PI—phosphatidylinositol, PS—phosphatidylserine, PE—phosphatidylethanolamine, PC—phosphatidylcholine) and electric charge that occur in cell membranes of colorectal cancer of pT3 stage, various grades (G2, G3) and without/with metastasis. Qualitative and quantitative composition of phospholipids in the membrane was determined by HPLC (high-performance liquid chromatography). The surface charge density of colorectal cancer cell membranes was measured using electrophoresis. The measurements were carried out at various pH of solution. It was shown that the process of cancer transformation was accompanied by an increase in total amount of phospholipids as well as an increase in total positive charge at low pH and total negative charge at high pH. A malignant neoplasm cells with metastases are characterized by a higher PC/PE ratio than malignant neoplasm cells without metastases. (Mol Cell Biochem 276: 113–119, 2005)  相似文献   

15.
The control of enzymes and substrates on the flux through microbial metabolic pathways can be quantified in terms of flux control coefficients. In pathways involving group transfer, the summation theorem for flux control by the enzymes has to be modified: the sum of control by all enzymes is between 1 and 2. The phosphoenolpyruvate:glucose phosphotransferase system is such a pathway. Experimental determination of the control by the enzymes in this pathway is under way. The control of the enzymes on the glycolytic flux in yeast is low, with the possible exception of the uptake step. InKlebsiella pneumoniae potassium and ammonium ions can simultaneously be limiting, (i.e. have significant control on growth) at pH 6, but not at pH 8. This may be due to the fact that at pH 8 the high-affinity potassium uptake system is absent.  相似文献   

16.
Our understanding of the mechanisms involved in the development of alcohol-induced liver disease has increased substantially in recent years. Specifically, reactive oxygen and nitrogen species have been identified as key components in initiating and possibly sustaining the pathogenic pathways responsible for the progression from alcohol-induced fatty liver to alcoholic hepatitis and cirrhosis. Ethanol has been demonstrated to increase the production of reactive oxygen and nitrogen species and decrease several antioxidant mechanisms in liver. However, the relative contribution of the proposed sites of ethanol-induced reactive species production within the liver is still not clear. It has been proposed that chronic ethanol-elicited alterations in mitochondria structure and function might result in increased production of reactive species at the level of the mitochondrion in liver from ethanol consumers. This in turn might result in oxidative modification and inactivation of mitochondrial macromolecules, thereby contributing further to mitochondrial dysfunction and a loss in hepatic energy conservation. Moreover, ethanol-related increases in reactive species may shift the balance between pro- and anti-apoptotic factors such that there is activation of the mitochondrial permeability transition, which would lead to increased cell death in the liver after chronic alcohol consumption. This article will examine the critical role of these reactive species in ethanol-induced liver injury with specific emphasis on how chronic ethanol-associated alterations to mitochondria influence the production of reactive oxygen and nitrogen species and how their production may disrupt hepatic energy conservation in the chronic alcohol abuser.  相似文献   

17.
Although cancers are highly heterogeneous at the genomic level, they can manifest common patterns of gene expression. Here, we use gene expression signatures to interrogate two major processes in cancer, proliferation and tissue remodeling. We demonstrate that proliferation and remodeling signatures are partially independent and result in four distinctive cancer subtypes. Cancers with the proliferation signature are characterized by signatures of p53 and PTEN inactivation and concomitant Myc activation. In contrast, remodeling correlates with RAS, HIF-1α and NFκB activation. From the metabolic point of view, proliferation is associated with upregulation of glycolysis and serine/glycine metabolism, whereas remodeling is characterized by a downregulation of oxidative phosphorylation. Notably, the proliferation signature correlates with poor outcome in lung, prostate, breast and brain cancer, whereas remodeling increases mortality rates in colorectal and ovarian cancer.  相似文献   

18.
The aim of this study was to investigate the mechanism of cellular regulation of mitochondrial respiration in permeabilized cardiac cells with clearly different structural organization: (i) in isolated rat cardiomyocytes with very regular mitochondrial arrangement, (ii) in HL-1 cells from mouse heart, and (iii) in non-beating (NB HL-1 cells) without sarcomeres with irregular and dynamic filamentous mitochondrial network. We found striking differences in the kinetics of respiration regulation by exogenous ADP between these cells: the apparent Km for exogenous ADP was by more than order of magnitude (14 times) lower in the permeabilized non-beating NB HL-1 cells without sarcomeres (25 ± 4 μM) and seven times lower in normally cultured HL-1 cells (47 ± 15 μM) than in permeabilized primary cardiomyocytes (360 ± 51 μM). In the latter cells, treatment with trypsin resulted in dramatic changes in intracellular structure that were associated with 3-fold decrease in apparent Km for ADP in regulation of respiration. In contrast to permeabilized cardiomyocytes, in NB HL-1 cells creatine kinase activity was low and the endogenous ADP fluxes from MgATPases recorded spectrophotometrically by the coupled enzyme assay were not reduced after activation of mitochondrial oxidative phosphorylation by the addition of mitochondrial substrates, showing the absence of ADP channelling in the NB HL-1 cells. While in the permeabilized cardiomyocytes creatine strongly activated mitochondrial respiration even in the presence of powerful competing pyruvate kinase-phosphoenolpyruvate system, in the NB HL-1 cells the stimulatory effect of creatine was not significant. The results of this study show that in normal adult cardiomyocytes and HL-1 cells intracellular local restrictions of diffusion of adenine nucleotides and metabolic feedback regulation of respiration via phosphotransfer networks are different, most probably related to differences in structural organization of these cells.  相似文献   

19.
Targeted drugs tailored against genes and signaling proteins have formed the new era termed Targeted Therapies. Although the field is relatively young, since only about 5 years ago clinical trials started showing promise, there have are already been significant setbacks due to drug resistance caused by point mutations, alterations in gene expression or complete loss of target proteins with disease progression. Although new drugs are continuously designed and tried, it seems inevitable that genetic and signal protein targets pose too broad flexibility and variability, often changing target characteristics and thus escape treatments turning “magic bullets” into rather “wondering bullets”. This is especially true in cancer, where old and new targeted therapies continue to fail and the most recent ones do not offer much improvement on clinical outcome parameters. Metabolic targeted therapies are aimed at control points of the metabolic network by targeting particular enzymes of major macromolecule synthesis pathways in cancer. This review summarizes the potential benefits of targeted therapies in the metabolic network as applied with genetic and proteomic approaches. The metabolic target approach is most efficient if and when pathway flux information is available for drug target development using the stable isotope based dynamic metabolic profile (SIDMAP) of tumor cells, in vitro or in vivo.This revised version was published online in June 2005. The previous version did not contain colour images.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号