首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This contribution describes the trapping of the hydroperoxyl radical at a pH of 4 during turnover of wild-type oxalate decarboxylase and its T165V mutant using the spin-trap BMPO. Radicals were detected and identified by a combination of EPR and mass spectrometry. Superoxide, or its conjugate acid, the hydroperoxyl radical, is expected as an intermediate in the decarboxylation and oxidation reactions of the oxalate monoanion, both of which are promoted by oxalate decarboxylase. Another intermediate, the carbon dioxide radical anion was also observed. The quantitative yields of superoxide trapping are similar in the wild type and the mutant while it is significantly different for the trapping of the carbon dioxide radical anion. This suggests that the two radicals are released from different sites of the protein.  相似文献   

2.
Oxalate decarboxylase (OxDC) catalyzes the conversion of oxalate into CO(2) and formate using a catalytic mechanism that remains poorly understood. The Bacillus subtilis enzyme is composed of two cupin domains, each of which contains Mn(II) coordinated by four conserved residues. We have measured heavy atom isotope effects for a series of Bacillus subtilis OxDC mutants in which Arg-92, Arg-270, Glu-162, and Glu-333 are conservatively substituted in an effort to define the functional roles of these residues. This strategy has the advantage that observed isotope effects report directly on OxDC molecules in which the active site manganese center(s) is (are) catalytically active. Our results support the proposal that the N-terminal Mn-binding site can mediate catalysis, and confirm the importance of Arg-92 in catalytic activity. On the other hand, substitution of Arg-270 and Glu-333 affects both Mn(II) incorporation and the ability of Mn to bind to the OxDC mutants, thereby precluding any definitive assessment of whether the metal center in the C-terminal domain can also mediate catalysis. New evidence for the importance of Glu-162 in controlling metal reactivity has been provided by the unexpected observation that the E162Q OxDC mutant exhibits a significantly increased oxalate oxidase and a concomitant reduction in decarboxylase activities relative to wild type OxDC. Hence the reaction specificity of a catalytically active Mn center in OxDC can be perturbed by relatively small changes in local protein environment, in agreement with a proposal based on prior computational studies.  相似文献   

3.
XC Sarcoma, Vero and Aedes aegypti plasma membranes have been studied in viable cells and in purified membrane of XC Sarcoma cells by the spin label method. The temperature dependence of the order parameter of fatty acid spin labels is found to be linear in all three cells and membrane and shows no evidence of a lipid phase transition. The order parameter of the fatty acid labels substituted at the 5-position is shown to increase as a function of the cholesterol: phospholipid molar ratio in cells that have been studied to date. Cells attached to their growing surface are studied for the first time by electron paramagnetic resonance spectroscopy (EPR). The resulting spectra are anisotropic due to the non-spherical shape of the cells and show that these labels orient preferentially perpendicular to the cell surface. The viscosity of the extracted XC cell membrane is estimated to be 2.5 P from rotational correlation time measurements of the spin label 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO).  相似文献   

4.
Oxalate decarboxylase from Bacillus subtilis is a binuclear Mn-dependent acid stress response enzyme that converts the mono-anion of oxalic acid into formate and carbon dioxide in a redox neutral unimolecular disproportionation reaction. A π-stacked tryptophan dimer, W96 and W274, at the interface between two monomer subunits facilitates long-range electron transfer between the two Mn ions and plays an important role in the catalytic mechanism. Substitution of W96 with the unnatural amino acid 5-hydroxytryptophan leads to a persistent EPR signal which can be traced back to the neutral radical of 5-hydroxytryptophan with its hydroxyl proton removed. 5-Hydroxytryptophan acts as a hole sink preventing the formation of Mn(III) at the N-terminal active site and strongly suppresses enzymatic activity. The lower boundary of the standard reduction potential for the active site Mn(II)/Mn(III) couple can therefore be estimated as 740 mV against the normal hydrogen electrode at pH 4, the pH of maximum catalytic efficiency. Our results support the catalytic importance of long-range electron transfer in oxalate decarboxylase while at the same time highlighting the utility of unnatural amino acid incorporation and specifically the use of 5-hydroxytryptophan as an energetic sink for hole hopping to probe electron transfer in redox proteins.  相似文献   

5.
Oxalate decarboxylase (OXDC) from the wood-rotting fungus Flammulina velutipes, which catalyzes the conversion of oxalate to formic acid and CO(2) in a single-step reaction, is a duplicated double-domain germin family enzyme. It has agricultural as well as therapeutic importance. We reported earlier the purification and molecular cloning of OXDC. Knowledge-based modeling of the enzyme reveals a beta-barrel core in each of the two domains organized in the hexameric state. A cluster of three histidines suitably juxtaposed to coordinate a divalent metal ion exists in both the domains. Involvement of the two histidine clusters in the catalytic mechanism of the enzyme, possibly through coordination of a metal cofactor, has been hypothesized because all histidine knockout mutants showed total loss of decarboxylase activity. The atomic absorption spectroscopy analysis showed that OXDC contains Mn(2+) at up to 2.5 atoms per subunit. Docking of the oxalate in the active site indicates a similar electrostatic environment around the substrate-binding site in the two domains. We suggest that the histidine coordinated manganese is critical for substrate recognition and is directly involved in the catalysis of the enzyme.  相似文献   

6.
Oxalate decarboxylase is a manganese-dependent enzyme that catalyzes the conversion of oxalate to formate and carbon dioxide. We have determined the structure of oxalate decarboxylase from Bacillus subtilis at 1.75 A resolution in the presence of formate. The structure reveals a hexamer with 32-point symmetry in which each monomer belongs to the cupin family of proteins. Oxalate decarboxylase is further classified as a bicupin because it contains two cupin folds, possibly resulting from gene duplication. Each oxalate decarboxylase cupin domain contains one manganese binding site. Each of the oxalate decarboxylase domains is structurally similar to oxalate oxidase, which catalyzes the manganese-dependent oxidative decarboxylation of oxalate to carbon dioxide and hydrogen peroxide. Amino acid side chains in the two metal binding sites of oxalate decarboxylase and the metal binding site of oxalate oxidase are very similar. Four manganese binding residues (three histidines and one glutamate) are conserved as well as a number of hydrophobic residues. The most notable difference is the presence of Glu333 in the metal binding site of the second cupin domain of oxalate decarboxylase. We postulate that this domain is responsible for the decarboxylase activity and that Glu333 serves as a proton donor in the production of formate. Mutation of Glu333 to alanine reduces the catalytic activity by a factor of 25. The function of the other domain in oxalate decarboxylase is not yet known.  相似文献   

7.
啤酒酿造中,双乙酰是影响啤酒生产熟化期长短及其风味的主要因素.存在于多种细菌中的a-乙酰乳酸脱羧酶(EC4.1.1.5,简称a-ALDC)[1]能将双乙酰的前体a-乙酰乳酸直接转化为对啤酒风味没有影响的乙偶姻,从而大大降低啤酒中双乙酰的含量,缩短啤酒熟化期.但所有的啤酒酵母菌不产生此酶.虽然在发酵过程中添加此酶是一个解决的途径,但解决问题的根本是将ALDC基因引入到啤酒酵母菌中.国外已开展这方面的研究[2,3],本研究组曾用随机克隆的方法获得了枯草芽孢杆菌a-ALDC基因[4],本文报道了枯草芽孢杆菌ALDC基因在工业用啤酒酵母中的表达研究结果.  相似文献   

8.
We used ethylenediaminetetraacetic acid dianhydride (EDTAD) to modify oxalate decarboxylase (OXDC) to improve its adsorption on calcium oxalate stones. The modified sites were identified by Ultra performance liquid chromatography-mass spectrometry (UPLC-MS) and the adsorption mechanism of the EDTAD-modified OXDC on calcium oxalate (CaOx) was investigated. We investigated adsorption time, initial enzyme concentration, temperature and solution pH on the adsorption process. Data were analyzed using kinetics, thermodynamics and isotherm adsorption models. UPLC-MS showed that EDTAD was attached to OXDC covalently and suggested that the chemical modification occurred at both the free amino of the side chain and the α-NH2 of the peptide. The adsorption capacity of the EDTAD-OXDC on calcium oxalate was 53.37% greater than that of OXDC at the initial enzyme concentration of 5 mg/ml, pH = 7.0, at 37° C. The modified enzyme (EDTAD-OXDC) demonstrated improved oxalate degradation activity at pH 4.5?6.0. Kinetic data fitting analysis suggested a pseudo second order kinetic model. Estimates of the thermodynamic parameters including ΔG0, ΔH0 and ΔS0 of the adsorption process showed it to be feasible, spontaneous and endothermic. Isotherm data fitting analysis indicated that the adsorption process is reduced to monolayer adsorption at a low enzyme concentration and to multilayer adsorption at a high enzyme concentration. It may be possible to apply OXDC to degradation of calcium oxalate stones.  相似文献   

9.
Circular dichroism (CD) spectra are presented of ferredoxin, ferredoxin-NADP reductase and their complex. A change in CD occurs on complex formation which is consistent with a decrease in the Cotton effects due to the ferredoxin. This change is interpreted as due to a decrease in interaction in ferredoxin between the iron-sulphur chromophore group and the protein.  相似文献   

10.
It is thought that direct quenching of singlet oxygen and scavenging free radicals by macular pigment carotenoids is a major mechanism for their beneficial effects against light-induced oxidative stress. Corresponding data from human tissue remains unavailable, however. In the studies reported here, electron paramagnetic resonance (EPR) spectroscopy was used to measure light-induced singlet oxygen generation in post-mortem human macula and retinal pigment epithelium/choroid (RPE/choroid). Under white-light illumination, production of singlet oxygen was detected in RPE/choroid but not in macular tissue, and we show that exogenously added macular carotenoids can quench RPE/choroid singlet oxygen. When the singlet oxygen quenching ability of the macular carotenoids was investigated in solution, it was shown that a mixture of meso-zeaxanthin, zeaxanthin, and lutein in a ratio of 1:1:1 can quench more singlet oxygen than the individual carotenoids at the same total concentration.  相似文献   

11.
The effects of oxalate on PS II and PS I photochemistry were studied. The results suggested that in chloride-deficient thylakoid membranes, oxalate inhibited activity of PS II as well as PS I. To our knowledge, this is the only anion so far known which inhibits both the photosystems. Measurements of fluorescence induction kinetics, YZ* decay, and S2 state multiline EPR signal suggested that oxalate inhibited PS II at the donor side most likely on the oxygen evolving complex. Measurements of re-reduction of P700+ signal in isolated PS I particles in oxalate-treated samples suggested a binding site of oxalate on the donor, as well as the acceptor side of PS I.  相似文献   

12.
We investigated aqueous solutions containing nitrite ions and DMPO (5,5-dimethyl-1-pyrroline-N-oxide) by electron spin resonance (ESR) in the pH range from 1 to 6. A DMPO-OH signal was observed below pH 3.0 in the presence of nitrite ions, whereas in the absence of nitrite ion, an extremely weak signal was observed below pH 1.5. Addition of methanol, a hydroxyl radical scavenger, to this system did not lead to the appearance of a detectable DMPO-CH2OH signal. The possibility of this DMPO-OH signal being due to a genuine spin trapping process with hydroxyl radical was, therefore, ruled out. The reactivities of reactive nitrogen species (RNS) in this system with DMPO have also been investigated by density functional theory (DFT) at the IEFPCM (water)/B3LYP/6–311?+?G ** level of theory. On the basis of the pH dependence of the signal intensity and the redox potential (versus SHE) calculated by DFT theory, we propose that the origin of this signal is “inverted spin trapping” via one-electron oxidation of DMPO by H2ONO+, followed by the nucleophilic addition of water. Prevention of these false-positive results when detecting hydroxyl radical using ESR spin trapping requires an awareness of both the presence of nitrite ions in the solution and the solution pH.  相似文献   

13.
14.
Carbamoylphosphate has been shown to be the educt for the synthesis of the CN ligands of the NiFe metal centre of hydrogenases from Escherichia coli. In the absence of carbamoylphosphate, cells accumulate a complex of two hydrogenase maturation proteins, namely HypC and HypD for the synthesis of hydrogenase 3. A procedure for the purification of wild-type HypD protein or of a biologically active derivative carrying the Strep-tagII((R)) at the N terminus has been developed. HypD is a monomeric protein possessing about 4 mol of iron per mol of protein. Electron paramagnetic resonance (EPR) and Mossbauer spectroscopy demonstrated that the iron is present as a diamagnetic [4Fe-4S](2+) cluster. The complex between HypC and HypD can be cross-linked by a number of thiol and primary amine-specific linkers. When HypD and HypC were overproduced side-by-side with HypE, the HypC-HypD complex contained substoichiometric amounts of HypE whose proportion in the complex could be augmented when HypF was also overproduced. HypE trapped in this complex could be carbamoylated by protein HypF and after dehydration transferred the cyano group to the HypC-HypD part of the complex. Free HypC and HypD were not cyanated by HypE-CN. An active HypC-HypD complex from anaerobic cells was inactivated by incubation with K(3)[Fe(CN)(6)] but not with K(4)[Fe(CN)(6)]. The results suggest the existence of a dynamic complex between the hydrogenase maturation proteins HypD, HypC, HypE and HypF, which is the site of ligand biosynthesis and attachment to the iron atom of the NiFe site in hydrogenase 3.  相似文献   

15.
Oxalate degrading enzymes have a number of potential applications, including medical diagnosis and treatments for hyperoxaluria and other oxalate-related diseases, the production of transgenic plants for human consumption, and bioremediation of the environment. This review seeks to provide a brief overview of current knowledge regarding the major classes of enzymes and related proteins that are employed in plants, fungi, and bacteria to convert oxalate into CO(2) and/or formate. Not only do these enzymes employ intriguing chemical strategies for cleaving the chemically unreactive C-C bond in oxalate, but they also offer the prospect of providing new insights into the molecular processes that underpin the evolution of biological catalysts.  相似文献   

16.
酶的定向固定化方法及其对酶生物活性的影响   总被引:13,自引:0,他引:13  
固定化酶可以提高酶的稳定性,但通常酶通过酶分子上的多个赖氨酸残基随意固定在载体上,这样会使酶的活性显著下降,采用定向固定化酶不仅可以提高酶的稳定性,而且可以保存它的活性。综述了定向固定化酶的几种方法,比较了定向固定化和随意固定化对酶活性的影响。另外,还叙述了酶的活性位点结构变化的自旋共振波谱(EPR)检测。  相似文献   

17.
18.
A nitronyl nitroxide radical covalently linked to an organic fluorophore, pyrene, was used to detect nitric oxide (NO) from freshly excited tissues. This approach is based on the phenomenon of the intramolecular fluorescence quenching of the fluorophore fragment by the nitroxide. The pyrene-nitronyl (PN) reacts with NO to yield a pyrene-imino nitroxide radical (PI) and NO(2). Conversion of PN to PI is accompanied by changes in the electron paramagnetic resonance (EPR) spectrum from a five-line pattern (two equivalent N nuclei) into a seven-line pattern (two nonequivalent N nuclei). The transformation of the EPR signal is accompanied by an increase in the fluorescence intensity since the imino nitroxide radical is a weaker quencher than the nitronyl one. The results indicate that the fluorescence measurements enable detection of nanomolar concentrations of NO compared to a sensitivity threshold of only several micromolar for the EPR technique. The method was applied to the determination of NO and S-nitroso compounds in tissue from pig trachea epithelia. The measured basal flux of S-nitroso compounds obtained from the tissues was about 1.2 nmol/g x min, and NO-synthase stimulated by extracellular adenosine 5'-triphosphate produced NO flux of 0.9 nmol/g x min.  相似文献   

19.
The rotational motion of an ouabain spin label with sheep kidney Na,K-ATPase has been measured by electron paramagnetic resonance (EPR) and saturation transfer EPR (ST-EPR) measurements. Spin-labelled ouabain binds with high affinity to the Na,K-ATPase with concurrent inhibition of ATPase activity. Enzyme preparations retain 0.61 ± 0.1 mol of bound ouabain spin label per ATPase β dimer. The conventional EPR spectrum of the ouabain spin label bound to the ATPase consists almost entirely (> 99%) of a broad resonance which is characteristic of a strongly immobilized spin label. ST-EPR measurements of the spin labelled ATPase preparations yield effective correlation times for the bound labels of 209 ± 11 μs at 0°C and 44 ± 4 μs at 20°C. These rotational correlation times most likely represent the motion of the protein itself rather than the independent motion of mobile spin probes relative to a slower moving protein. Additional ST-EPR measurements with glutaraldehyde-crosslinked preparations indicated that the observed rotational correlation times predominantly represented the motion of entire Na,K-ATPase-containing membrane fragments, rather than the motion of individual monomeric or dimeric polypeptides within the membrane fragment. The strong immobilization of the ouabain spin label will make it an effective paramagnetic probe of the extracellular surface of the Na,K-ATPase for a variety of NMR and EPR investigations.  相似文献   

20.
The impact of chromium (Cr) on fish health has been the subject of numerous investigations, establishing a wide spectrum of toxicity, attributed particularly to the hexavalent form [Cr(VI)]. However, reports on the simultaneous assessment of Cr toxicity in fish and its toxico-kinetics, namely involving metal speciation, are scarce. Therefore, keeping in view the understanding of the mechanisms of Cr(VI) toxicity, this work intended to detect the formation of paramagnetic Cr species in liver of Anguilla anguilla following short-term dichromate(VI) intraperitoneal treatment (up to 180 min), assessing simultaneously the pro-oxidant properties. The formation of Cr(V) and Cr(III) was examined by electron paramagnetic resonance (EPR), as an innovative approach in the context of fish toxicology, and related with the levels of total Cr. Cr(V) was successfully detected and quantified by EPR spectrometry, showing a transient occurrence, mostly between 15 and 90 min post-injection, with a peak at 30 min. The limitations of EPR methodology towards the detection and quantification of Cr(III) were confirmed. Although Cr(VI) exposure induced the antioxidant system in the eel's liver, the oxidative deterioration of lipids was not prevented. Overall, the results suggested that Cr(V), as a short-lived species, did not appear to be directly and primarily responsible for the cellular damaging effects observed, since stress responses persisted up to the end of exposure regardless Cr(V) drastic decay. Though further research is needed, ROS mediated pathways (suggested by superoxide dismutase and catalase activity induction) and formation of Cr(III) complexes emerged as the most plausible mechanisms involved in Cr(VI) toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号