首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly efficient laccase-producing fungus was isolated from soil and identified as Coltricia perennis SKU0322 by its morphology and by comparison of its internal transcribed spacer (ITS) rDNA gene sequence. Extracellular laccase (Cplac) from C. perennis was purified to homogeneity by anion-exchange and gel filtration chromatography. Cplac is a monomeric glycoprotein with 12% carbohydrate content and a molecular mass of 66 kDa determined by polyacrylamide-gel electrophoresis. Ultraviolet-visible absorption spectroscopy observed type 1 and type 3 copper signals from Cplac. The enzyme acted optimally at pH 3–4 and 75 °C. Its optimal activity was with 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonate) (ABTS), it also oxidized various lignin-related phenols. The enzyme was characterized as a multi-copper blue laccase by its substrate specificity and internal amino acid sequence. It showed a higher catalytic efficiency towards ABTS (kcat/Km = 18.5 s?1 μM?1) and 2,6-dimethoxyphenol (kcat/Km = 13.9 s?1 μM?1) than any other reported laccase. Its high stability and catalytic efficiency suggest its suitability for industrial applications: it detoxified phenolic compounds in acid-pretreated rice straw and enhanced saccharification yield.  相似文献   

2.
Protein radicals were selectively generated by reaction with azide radicals on Trp and Tyr residues in insulin, β-lactoglobulin, pepsin, chymotrypsin, and bovine serum albumin at rate constants in the range (2.9–19) × 108 M? 1 s? 1. Monohydrogen ascorbate reduced tryptophanyl radicals in chymotrypsin and pepsin with rate constants in the narrow range of (1.6–1.8) × 108 M? 1 s? 1, whereas β-lactoglobulin tryptophanyl radicals reacted almost 10 times slower. The corresponding values for the protein tyrosyl radicals were about an order of magnitude smaller. Comparison of the rate constants of reactions of free and protein-bound tryptophanyl and tyrosyl radicals showed that, in most cases, the location of the radicals in the protein chain did not constitute a major barrier to the reaction with monohydrogen ascorbate. The results suggest that, under physiological concentrations of dioxygen, monohydrogen ascorbate is likely to be a significant target of protein radicals. It seems likely, therefore, that reaction with protein radicals may be responsible for much of the well-documented loss of ascorbate in living organisms subjected to oxidative stress.  相似文献   

3.
A β-carbonic anhydrase (CA, EC 4.2.1.1) from the bacterial pathogen Brucella suis, bsCA 1, has been cloned, purified characterized kinetically and for inhibition with a series of water soluble glycosylated sulfanilamides. bsCA 1 has appreciable activity as catalyst for the hydration of CO2 to bicarbonate, with a kcat of 6.4 × 105 s?1 and kcat/Km of 3.9 × 107 M?1 s?1. All types of inhibitory activities have been detected, with KIs in the range of 8.9–110 nM. The best bsCA 1 inhibitor were the galactose and ribose sulfanilamides, with inhibition constants of 8.9–9.2 nM. Small structural changes in the sugar moiety led to dramatic differences of enzyme inhibitory activity for this series of compounds. One of the tested glycosylsulfonamides and acetazolamide significantly inhibited the growth of the bacteria in cell cultures.  相似文献   

4.
Thermoimaging – a highly sensitive and non-invasive method of temperature measurement – was applied to explore the role of changing photosynthetic efficiency in light-induced heating of tobacco (Nicotiana tabacum cv. Samsun) leaves. In the absence of evaporative cooling through the stomata, which was achieved by covering leaves with Vaseline, illumination with 50–1400 μM photons m?2 s?1 intensity of photosynthetically active radiation resulted in ≈1–5 °C leaf temperature increase in about 2 min. The heating effect showed a non-linear correlation with the extent of non-photochemical quenching (NPQ) resulting in higher leaf temperatures at higher NPQ values. When leaves were adapted to excessive irradiance (1300 μM photons m?2 s?1 for 6 h), which resulted in reduction of photosynthetic efficiency and amplification of NPQ the light-induced heating effect was enhanced. The experimental results have been explained on the basis of a simple theoretical model characterizing the balance of energy fluxes in leaves in relation to the efficiency of photosystem II photochemistry and non-photochemical quenching. The role of alternative energy dissipation pathways outside of PSII in the phenomenon of light-induced leaf heating is also discussed.  相似文献   

5.
Carbonic anhydrases (CAs, EC 4.2.1.1) belonging to α-, β-, γ- and ζ-classes and from various organisms, ranging from the bacteria, archaea to eukarya domains, were investigated for their esterase/phosphatase activity with 4-nitrophenyl acetate, 4-nitrophenyl phosphate and paraoxon as substrates. Only α-CAs showed esterase/phosphatase activity, whereas enzymes belonging to the β-, γ- and ζ-classes were completely devoid of such activity. Paraoxon, the metabolite of the organophosphorus insecticide parathione, was a much better substrate for several human/murine α-CA isoforms (CA I, II and XIII), with kcat/KM in the range of 2681.6–4474.9 M?1 s?1, compared to 4-nitrophenyl phosphate (kcat/KM of 14.9–1374.4 M?1 s?1).  相似文献   

6.
A novel glycodendrimer based on 18 peripheral α-d-mannoses functionalized perylene bisimide derivative PBI-18-Man was synthesized and its selectively binding interactions for Con A were investigated by CD spectra and turbidity assay, which exhibited strong binding affinity for Con A with the binding constant of 1.3 × 108 M?1 (7.2 × 106 M?1 for monomeric mannose, valency corrected), 3 orders of magnitude higher affinity than the monovalent mannose ligand. Furthermore, the inhibitory activity for Con A was studied by ELLA experiment, showed 2 times inhibitor activity than the reference compound (α-MMP).  相似文献   

7.
The interactions of a ruthenium porphyrin complex [(Py-3′)TPP-Ru(phen)2Cl]Cl (phen = 1,10-phenanthroline, (Py-3′)TPP = 5-(3′-pyridyl-10,15,20-triphenylporphyrin) (1) and its heterometallic derivatives, [Ni(Py-3′)TPP-Ru(phen)2Cl][PF6] (2) and [Cu(Py-3′)TPP-Ru(phen)2Cl][PF6] (3), with calf thymus DNA have been investigated by spectroscopic and viscosity measurements in this study. The results showed that these synthetic complexes can bind to double strand helix DNA in groove binding mode, and the intrinsic binding constants of complexes 1, 2 and 3, as calculated according to the decay of the Soret absorption, are (1.35 ± 0.5) ×105 M?1 (s = 4.2), (1.29 ± 0.5) × 105 M?1 (s = 5.6) and (1.22 ± 0.5) × 105 M?1 (s = 6.2) (s is the binding-site size), respectively, which are consistent with those obtained from ethidium bromide-quenching experiments. Further investigations on the photocleavage properties of these complexes on plasmid pBR 322 DNA showed that complexes 1, 2 and 3 could cleave single chain DNA and convert DNA molecules from supercoiled form to the nicked form. As determined by MTT assay, the complexes were also identified as potent antiproliferative agents against A375 human melanoma cells, MCF-7 human breast adrenocarcinoma cells, Colo201 human colon adenocarcinoma cells and HepG2 human liver cancer cells. Complex 1 inhibits the growth of A375 cells through induction of apoptotic cell death and G0/G1 cell cycle arrest. Further investigation on intracellular mechanisms indicated that Complex 1 induced depletion of mitochondrial membrane potential (ΔΨm) in A375 cells through regulating the expression of pro-survival and pro-apoptotic Bcl-2 family members. Our results suggest that ruthenium porphyrin complexes could be candidates for further evaluation as chemopreventive and chemotherapeutic agents for human cancers.  相似文献   

8.
Conjugation of lactase to magnetic nanoparticles is of interest in biosensor and ingredient processing applications that require high enzyme concentration and catalyst separation from the reaction stream. However, little is known about the effects of these materials on the physicochemical attributes of conjugated lactase. Lactase (Aspergillus oryzae) was covalently attached by carbodiimide chemistry to carboxylic-acid functionalized magnetic particles having a hydrodynamic radius of 18 nm. The resulting enzyme–nanoparticle conjugates were characterized with regard to particle size, zeta potential, enzyme kinetics, temperature and pH stability, catalyst recovery, and secondary structure changes. Following attachment, the materials retained colloidal stability and individual particle characteristics with a zeta potential of ?33 mV compared to ?46 mV for the native particle. The conjugated enzyme showed no changes in secondary structure and exhibited significant catalytic activity with a catalytic efficiency of 2.8 × 103 M?1 s?1 compared to 2.5 × 103 M?1 s?1 for the native enzyme. Relative to the free enzyme, the conjugated enzyme was recovered for repeated use with 78% activity retained after five cycles. This work demonstrates that carboxylic-acid functionalized magnetic nanoparticles can be utilized as a means of producing a simple and effective conjugated-lactase system that achieves both particle and enzyme stability.  相似文献   

9.
The aim of this study was to determine if athletes with a history of hamstring strain injury display lower levels of surface EMG (sEMG) activity and median power frequency in the previously injured hamstring muscle during maximal voluntary contractions. Recreational athletes were recruited, 13 with a history of unilateral hamstring strain injury and 15 without prior injury. All athletes undertook isokinetic dynamometry testing of the knee flexors and sEMG assessment of the biceps femoris long head (BF) and medial hamstrings (MHs) during concentric and eccentric contractions at ±180 and ±60° s?1. The knee flexors on the previously injured limb were weaker at all contraction speeds compared to the uninjured limb (+180° s?1 p = 0.0036; +60° s?1 p = 0.0013; ?60° s?1 p = 0.0007; ?180° s?1 p = 0.0007) whilst sEMG activity was only lower in the BF during eccentric contractions (?60° s?1 p = 0.0025; ?180° s?1 p = 0.0003). There were no between limb differences in MH sEMG activity or median power frequency from either BF or MH in the injured group. The uninjured group showed no between limb differences in any of the tested variables. Secondary analysis comparing the between limb difference in the injured and the uninjured groups, confirmed that previously injured hamstrings were mostly weaker (+180° s?1 p = 0.2208; +60° s?1 p = 0.0379; ?60° ?1 p = 0.0312; ?180° s?1 p = 0.0110) and that deficits in sEMG were confined to the BF during eccentric contractions (?60° s?1 p = 0.0542; ?180° s?1 p = 0.0473). Previously injured hamstrings were weaker and BF sEMG activity was lower than the contralateral uninjured hamstring. This has implications for hamstring strain injury prevention and rehabilitation which should consider altered neural function following hamstring strain injury.  相似文献   

10.
We investigated the effects of curcumin, the principal active compound of turmeric, on voltage-dependent K+ (Kv) channels in freshly isolated rabbit coronary arterial smooth muscle cells using the voltage-clamp technique. Curcumin reduced the Kv current in a dose-dependent manner with an apparent Kd value of 1.07 ± 0.03 μM. Although curcumin did not alter the kinetics of Kv current activation, it predominantly accelerated the decay rate of channel inactivation. The association and dissociation rate constants of curcumin were 1.35 ± 0.05 μM?1 s?1 and 1.47 ± 0.17 s?1, respectively. Curcumin did not alter the steady-state activation or inactivation curves. Application of train pulses (1 or 2 Hz) increased curcumin-induced blockade of the Kv current, and the recovery time constant also increased in the presence of curcumin suggesting, that the inhibitory action of Kv currents by curcumin was use-dependent. From these results, we concluded that curcumin inhibited vascular Kv current in a state-, time-, and use-dependent manner.  相似文献   

11.
The impact of flow velocity on initial ciliate colonization dynamics on surfaces were studied in the third order Ilm stream (Thuringia, Germany) at a slow flowing site (0.09 m s?1) and two faster flowing sites (0.31 m s?1) and in flow channels at 0.05, 0.4, and 0.8 m s?1. At the slow flowing stream site, surfaces were rapidly colonized by ciliates with up to 60 cells cm?2 after 24 h. In flow channels, the majority of suspended ciliates and inorganic matter accumulated at the surface within 4.5 h at 0.05 m s?1. At 0.4 m s?1 the increase in ciliate abundance in the biofilm was highest between 72 and 168 h at about 3 cells cm?2 h?1. Faster flow velocities were tolerated by vagile flattened ciliates that live in close contact to the surface. Vagile flattened and round filter feeders preferred biofilms at slow flow velocities. Addition of inorganic particles (0, 0.6, and 7.3 mg cm?2) did not affect ciliate abundance in flow channel biofilms, but small ciliate species dominated and number of species was lowest (16 species cm?2) in biofilms at high sediment content. Although different morphotypes dominated the communities at contrasting flow velocities, all functional groups contributed to initial biofilm communities implementing all trophic links within the microbial loop.  相似文献   

12.
The two components (BinA and BinB) of Lysinibacillus sphaericus binary toxin together are highly toxic to Culex and Anopheles mosquito larvae, and have been employed world-wide to control mosquito borne diseases. Upon binding to the membrane receptor an oligomeric form (BinA2.BinB2) of the binary toxin is expected to play role in pore formation. It is not clear if these two proteins interact in solution as well, in the absence of receptor. The interactions between active forms of BinA and BinB polypeptides were probed in solution using size-exclusion chromatography, pull-down assay, surface plasmon resonance, circular dichroism, and by chemically crosslinking BinA and BinB components. We demonstrate that the two proteins interact weakly with first association and dissociation rate constants of 4.5 × 103 M?1 s?1 and 0.8 s?1, resulting in conformational change, most likely, in toxic BinA protein that could kinetically favor membrane translocation of the active oligomer. The weak interactions between the two toxin components could be stabilized by glutaraldehyde crosslinking. The cross-linked complex, interestingly, showed maximal Culex larvicidal activity (LC50 value of 1.59 ng mL?1) reported so far for combination of BinA/BinB components, and thus is an attractive option for development of new bio-pesticides for control of mosquito borne vector diseases.  相似文献   

13.
The impact of conservation tillage practices on soil carbon has been of great interest in recent years. Conservation tillage might have the potential to enhance soil carbon accumulation and alter the depth distribution of soil carbon compared to conventional tillage based systems. Changes in the soil organic carbon (SOC) as influenced by tillage, are more noticeable under long-term rather than short-term tillage practices. The objective of this study was to determine the impacts of long-term tillage on SOC and dissolved organic carbon (DOC) status after 19 years of four tillage treatments in a Hydragric Anthrosol. In this experiment four tillage systems included conventional tillage with rotation of rice and winter fallow system (CTF), conventional tillage with rotation of rice and rape system (CTR), no-till and ridge culture with rotation of rice and rape system (NT) and tillage and ridge culture with rotation of rice and rape system (TR). Soils were sampled in the spring of 2009 and sectioned into 0–10, 10–20, 20–30, 30–40, 40–50 and 50–60 cm depth, respectively.Tillage effect on SOC was observed, and SOC concentrations were much larger under NT than the other three tillage methods in all soil depths from 0 to 60 cm. The mean SOC concentration at 0–60 cm soil depth followed the sequence: NT (22.74 g kg?1) > CTF (14.57 g kg?1) > TR (13.10 g kg?1) > CTR (11.92 g kg?1). SOC concentrations under NT were significantly higher than TR and CTR (P < 0.01), and higher than CTF treatment (P < 0.05). The SOC storage was calculated on equivalent soil mass basis. Results showed that the highest SOC storage at 0–60 cm depth presented in NT, which was 158.52 Mg C ha?1, followed by CTF (106.74 Mg C ha?1), TR (93.11 Mg C ha?1) and CTR (88.60 Mg C ha?1). Compared with conventional tillage (CTF), the total SOC storage in NT increased by 48.51%, but decreased by 16.99% and 12.77% under CTR and TR treatments, respectively. The effect of tillage on DOC was significant at 0–10 cm soil layer, and DOC concentration was much higher under CTF than the other three treatments (P < 0.01). Throughout 0–60 cm soil depth, DOC concentrations were 32.92, 32.63, 26.79 and 22.10 mg kg?1 under NT, CTF, CTR and TR, and the differences among the four treatments were not significant (P > 0.05). In conclusion, NT increased SOC concentration and storage compared to conventional tillage operation but not for DOC.  相似文献   

14.
The West Nile Virus (WNV) has been a worldwide epidemic since the early 1990s. Currently there are no therapeutic treatments for WNV infections. One particular avenue of treatment is inhibition of the NS2B-NS3 protease, an enzyme that is crucial for WNV replication. In our effort to increase the number of NS2B-NS3 protease inhibitors, we report a novel FRET-based high throughput assay for the discovery of WNV NS2B-NS3 protease inhibitors. For this assay, a FRET-based peptide substrate was synthesized and kinetically characterized with the NS2B-NS3 protease. The new substrate exhibits a Km of 3.35 ± 0.31 μM, a kcat of 0.0717 ± 0.0016 s?1 and a kcat/Km of 21,400 ± 2000 M?1 s?1.  相似文献   

15.
Low-molecular-mass trypsin inhibitor (clTI-1; chicken liver Trypsin Inhibitor-1) was purified from chicken liver by extraction with perchloric acid, ammonium sulfate precipitation, a combination of ethanol-acetone fractionation followed by gel filtration, ion-exchange chromatography and RP-HPLC on a C18 column. The inhibitor occurs in two isoforms with molecular masses of 5938.56 and 6026.29 Da (determined by MALDI TOFF mass spectrometry). The complete amino acid sequences of both isoforms were determined (UniProtKB/Swiss-Prot P85000; ISK1L_CHICK). The inhibitor shows a high homology to Kazal-type family inhibitors, especially to trypsin/acrosin inhibitors and pancreatic secretory trypsin inhibitors. clTI-1 inhibits both bovine and porcine trypsin (Ka = 1.1 × 109 M?1 and 2.5 × 109 M?1, respectively). Significant differences were shown in the inhibition of the anionic and cationic forms of chicken trypsin (Ka = 4.5 × 108 M?1 and 1.2 × 1010 M?1). Weak interaction with human plasmin (Ka = 1.2 × 107 M?1) was also revealed.  相似文献   

16.
A series of acridin-3,6-diyl dithiourea hydrochloride derivatives (alkyl-AcrDTU) was prepared and tested against sensitive and drug resistant leukemia cell lines for their cytotoxic/cytostatic activity. The products (ethyl-, n-propyl-, n-butyl-, n-pentyl-AcrDTU) showed high DNA binding affinity via intercalation (K = 7.6 ? 2.9 × 105 M?1). All derivatives inhibited proliferation of HL-60 cells and its resistant subline HL-60/ADR, unexpectedly the resistant subline was more sensitive than the parental one (IC50 = 3.5 μM, 48-treatment of HL-60/ADR with pentyl-AcrDTU). Cytotoxicity of tested compounds was associated with their DNA-binding properties and the level of intracellular thiols has been changed in the presence of AcrDTU.  相似文献   

17.
18.
The phytase of Sporotrichum thermophile was purified to homogeneity using acetone precipitation followed by ion-exchange and gel-filtration column chromatography. The purified phytase is a homopentamer with a molecular mass of ~456 kDa and pI of 4.9. It is a glycoprotein with about 14% carbohydrate, and optimally active at pH 5.0 and 60 °C with a T1/2 of 16 h at 60 °C and 1.5 h at 80 °C. The activation energy of the enzyme reaction is 48.6 KJ mol?1 with a temperature quotient of 1.66, and it displayed broad substrate specificity. Mg2+ exhibited a slight stimulatory effect on the enzyme activity, while it was markedly inhibited by 2,3-butanedione suggesting a possible role of arginine in its catalysis. The chaotropic agents such as guanidinium hydrochloride, urea and potassium iodide strongly inhibited phytase activity. Inorganic phosphate inhibited enzyme activity beyond 3 mM. The maximum hydrolysis rate (Vmax) and apparent Michaelis–Menten constant (Km) for sodium phytate were 83 nmol mg?1 s?1 and 0.156 mM, respectively. The catalytic turnover number (Kcat) and catalytic efficiency (Kcat/Km) of phytase were 37.8 s?1 and 2.4 × 105 M?1 s?1, respectively. Based on the N-terminal and MALDI–LC–MS/MS identified amino acid sequences of the peptides, the enzyme did not show a significant homology with the known phytases.  相似文献   

19.
Five new α-aminophosphonates are synthesized and characterized by EA, FT-IR, 1H NMR, 13C NMR, 31P NMR, ESI-MS and X-ray crystallography. The X-ray analyses reveal that the crystal structures of 1–5 are monoclinic or triclinic system with the space group P 21/c, P  1, P  1, P2(1)/c and P  1, respectively. All P atoms of 1–5 have tetrahedral geometries involving two O-ethyl groups, one Cα atom, and a double bond O atom. The binding interaction of five new α-aminophosphonate N-derivatives (1–5) with calf thymus(CT)-DNA have been investigated by UV–visible and fluorescence emission spectrometry. The apparent binding constant (Kapp) values follows the order: 1 (3.38 × 105 M−1) > 2 (3.04 × 105 M−1) > 4 (2.52 × 105 M−1) > 5 (2.32 × 105 M−1) > 3 (2.10 × 105 M−1), suggesting moderate intercalative binding mode between the compounds and DNA. In addition, fluorescence spectrometry of bovine serum albumin (BSA) with the compounds 1–5 showed that the quenching mechanism might be a static quenching procedure. For the compounds 1–5, the number of binding sites were about one for BSA and the binding constants follow the order: 1 (2.72 × 104 M−1) > 2 (2.27 × 104 M−1) > 4 (2.08 × 104 M−1) > 5 (1.79 × 104 M−1) > 3 (1.17 × 104 M−1). Moreover, the DNA cleavage abilities of 1 exhibit remarkable changes and the in vitro cytotoxicity of 1 on tumor cells lines (MCF-7, HepG2 and HT29) have been examined by MTT and shown antitumor effect on the tested cells.  相似文献   

20.
A highly chitinolytic strain Penicillium ochrochloron MTCC 517 was procured from MTCC, Chandigarh, India. Culture medium supplemented with 1% chitin was found to be suitable for maximum production of chitinase. Purification of extracellular chitinase was done from the culture medium by organic solvent precipitation and DEAE-cellulose column chromatography. The chitinase was purified 6.92-fold with 29.9% yield. Molecular mass of purified chitinase was found to be 64 kDa by SDS-PAGE. The chitinase showed optimum temperature 40 °C and pH 7.0. The enzyme activity was completely inhibited by Hg2+, Zn2+, K+ and NH4+. The enzyme kinetic study of purified chitinase revealed the following characteristics, such as apparent Km 1.3 mg ml?1, Vmax 5.523 × 10?5 moles l?1 min?1 and Kcat 2.37 s?1 and catalytic efficiency 1.82 s?1 M?1. The enzyme hydrolyzed colloidal chitin, glycol chitin, chitosan, glycol chitosan, N,N′-diacetylchitobiose, p-nitrophenyl N-acetyl-β-d-glucosaminide and 4-methylumbelliferyl N-acetyl-β-d-glucosaminide. The chitinase of P. ochrochloron MTCC 517 is an exoenzyme, which gives N-acetylglucosamine as the main hydrolyzate after hydrolysis of colloidal chitin. Protoplasts with high regeneration capacity were obtained from Aspergillus niger using chitinase from P. ochrochloron MTCC 517. Since it also showed antifungal activity, P. ochrochloron MTCC 517 seems to be a promising biocontrol agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号