共查询到20条相似文献,搜索用时 0 毫秒
1.
Polarization sensitive optical coherence tomography (PSOCT) is an interferometric technique sensitive to birefringence. Since mechanical loading alters the orientation of birefringent collagen fibrils, we asked if PSOCT can be used to measure local mechanical properties of sclera.Infrared (1300 nm) PSOCT was performed during uniaxial tensile loading of fresh scleral specimens of rabbits, cows, and humans from limbal, equatorial, and peripapillary regions. Specimens from 8 human eyes were obtained. Specimens were stretched to failure at 0.01 mm/s constant rate under physiological conditions of temperature and humidity while birefringence was computed every 117 ms from cross-sectional PSOCT. Birefringence modulus (BM) was defined as the rate of birefringence change with strain, and tensile modulus (TM) as the rate of stress change between 0 and 9% strain.In cow and rabbit, BM and TM were positively correlated with slopes of 0.17 and 0.10 GPa, and with correlation coefficients 0.63 and 0.64 (P < 0.05), respectively, following stress-optic coefficients 4.69, and 4.20 GPa−1. In human sclera, BM and TM were also positively correlated with slopes of 0.24 GPa for the limbal, 0.26 GPa for the equatorial, and 0.31 GPa for the peripapillary regions. Pearson correlation coefficients were significant at 0.51, 0.58, and 0.69 for each region, respectively (<0.001). Mean BM decreased proportionately to TM from the limbal to equatorial to peripapillary regions, as stress-optic coefficients were estimated as 2.19, 2.42, and 4.59 GPa−1, respectively.Since birefringence and tensile elastic moduli correlate differently in cow, rabbit, and various regions of human sclera, it might be possible to mechanically characterize the sclera in vivo using PSOCT. 相似文献
2.
Optical coherence tomography (OCT) was used to monitor the dynamics of tumour spheroid formation by the hanging drop method.
In contrast to microscopy, the estimates obtained using OCT for the volume of the spheroid, were consistent with the measured
changes in cell number as a function of time. The OCT images also revealed heterogeneous structures in the spheroids of ∼200 μm
diameter. These corresponded to the necrotic regions identified by fluorescence of propidium iodide stained cells. 相似文献
3.
F. Alfonso J. Restrepo J. Cuesta T. Bastante F. Rivero A. Benedicto 《Netherlands heart journal》2015,23(5):287-288
A patient presenting with ‘edge’ in-stent restenosis 12 years after the implantation of a bare-metal stent in the mid-left anterior descending coronary artery is described. Optical coherence tomography disclosed the presence of ruptured neoatherosclerosis at the stent edge. The value of this imaging technique to unravel this unique underlying anatomic substrate is discussed. The therapy of choice for patients presenting with edge in-stent restenosis (ISR) is reviewed. 相似文献
4.
Nhan Le Hrebesh M. Subhash LaTonya Kilpatrick‐Liverman Ruikang K. Wang 《Journal of biophotonics》2020,13(7)
We report the development of an integrated multifunctional imaging system capable of providing anatomical (optical coherence tomography, OCT), functional (OCT angiography, OCTA) and molecular imaging (light‐induced autofluorescence, LIAF) for in vivo dental applications. Blue excitation light (405 nm) was used for LIAF imaging, while the OCT was powered by a 1310 nm swept laser source. A red‐green‐blue digital camera, with a 450 nm cut‐on broadband optical filter, was used for LIAF detection. The exciting light source and camera were integrated directly with the OCT scanning probe. The integrated system used two noninvasive imaging modalities to improve the speed of in vivo OCT data collection and to better target the regions of interest. The newly designed system maintained the ability to detect differences between healthy and hypomineralized teeth, identify dental biofilm and visualize the microvasculature of gingival tissue. The development of the integrated OCT‐LIAF system provides an opportunity to conduct clinical studies more efficiently, examining changes in oral conditions over time. 相似文献
5.
G. van Soest T. P. M. Goderie N. Gonzalo S. Koljenović G. L. J. H. van Leenders E. Regar P. W. Serruys A. F. W. van der Steen 《Netherlands heart journal》2009,17(11):448-450
Optical coherence tomography (OCT) allows highly accurate diagnosis of atherosclerotic plaques, including measurement of the thickness of fibrous caps, permitting an assessment of the risk of rupture. While the OCT image presents morphological information in highly resolved detail, it relies on interpretation by trained readers for the identification of tissue type. We developed a method for quantitative classification of atherosclerotic plaque constituents. The optical attenuation coefficient μt distinguishes different tissue types: necrotic core and macrophage infiltration exhibit strong attenuation, μt≥10 mm−1, while calcific and fibrous tissue have a lower μt≈2–5 mm−1. (Neth Heart J 2009;17:448-50.) 相似文献
6.
Nanshou Wu Min Yi Caizhong Guan Mingyi Wang Zhang Zhang Xulun Yang Hongyi Li Dingan Han Yaguang Zeng Zhilie Tang 《Journal of biophotonics》2021,14(6):e202000443
Motion correction is an important issue in ophthalmic optical coherence tomography (OCT), and can improve the ability of data sets to reflect the physiological structures of tissues and make visualization and subsequent analysis easier. In this study, we present a novel method to correct the cross-sectional motion artifacts in retinal OCT volumes. Motion along the x-direction (fast-scan direction) is corrected through the normalized cross-correlation algorithm, while axial motion compensation is performed using the polynomial fitting method on the inner segment/outer segment (IS/OS) layer segmented by the shortest path faster algorithm (SPFA). The results of volunteers with central serous chorioretinopathy demonstrate that the proposed method effectively corrects motion artifacts in OCT volumes and may have potential application value in the evaluation of ophthalmic diseases such as diabetic retinopathy, glaucoma and age-related macular degeneration. 相似文献
7.
Imaging depth extension of optical coherence tomography in rabbit eyes using optical clearing agents
Ruiming Kong Wenjuan Wu Rui Qiu Lei Gao Fengxian Du Ailin Liu Xuan Cai Cuixia Dai 《Experimental biology and medicine (Maywood, N.J.)》2020,245(18):1629
Optical coherence tomography has become an indispensable diagnostic tool in ophthalmology for imaging the retina and the anterior segment of the eye. However, the imaging depth of optical coherence tomography is limited by light attenuation in tissues due to optical scattering and absorption. In this study of rabbit eye both ex vivo and in vivo, optical coherence tomography imaging depth of the anterior and posterior segments of the eye was extended by using optical clearing agents to reduce multiple scattering. The sclera, the iris, and the ciliary body were clearly visualized by direct application of glycerol at an incision on the conjunctiva, and the posterior boundary of sclera and even the deeper tissues were detected by submerging the posterior segment of eye in glycerol solution ex vivo or by retro-bulbar injection of glycerol in vivo. The ex vivo rabbit eyes recovered to their original state in 60 s after saline-wash treatment, and normal optical coherence tomography images of the posterior segment of the sample eyes proved the self-recovery of in vivo performance. Signal intensities of optical coherence tomography images obtained before and after glycerol treatment were compared to analysis of the effect of optical clearing. To the best of our knowledge, this is the first study for imaging depth extension of optical coherence tomography in both the anterior and posterior segments of eye by using optical clearing agents. 相似文献
8.
Arash Dadkhah Dhruba Paudel Shuliang Jiao 《Experimental biology and medicine (Maywood, N.J.)》2021,246(20):2207
Optical coherence tomography angiography (OCTA) is a functional extension of optical coherence tomography for non-invasive in vivo three-dimensional imaging of the microvasculature of biological tissues. Several algorithms have been developed to construct OCTA images from the measured optical coherence tomography signals. In this study, we compared the performance of three OCTA algorithms that are based on the variance of phase, amplitude, and the complex representations of the optical coherence tomography signals for rodent retinal imaging, namely the phase variance, improved speckle contrast, and optical microangiography. The performance of the different algorithms was evaluated by comparing the quality of the OCTA images regarding how well the vasculature network can be resolved. Quantities that are widely used in ophthalmic studies including blood vessel density, vessel diameter index, vessel perimeter index, vessel complexity index were also compared. Results showed that both the improved speckle contrast and optical microangiography algorithms are more robust than phase variance, and they can reveal similar vasculature features while there are statistical differences in the calculated quantities. 相似文献
9.
在本文中,我们提出了一种自动视网膜分割方法,以评估光学相干断层扫描(OCT)图像中黄斑水肿(ME)在视网膜特定层上的投影面积。首先使用基于权重矩阵的优化的最短路径最快算法对十个视网膜层边界进行分割,这有效降低了算法对血管阴影的敏感性。然而,ME的存在将导致水肿区域的分割不准确。因此,我们使用强度阈值方法提取每个OCT图像中的水肿区域,并将该区域中的值设置为零,并确保获得的分割边界可以自动穿过而不是绕过水肿区域。我们使用最小值投影来计算ME在不同层的投影面积。为了测试我们的方法,我们使用了从Topcon的OCT机器收集的数据。在轴向和B扫描方向上测得的黄斑区域分辨率分别为11.7微米和46.8微米。与手动分割相比,视网膜层边界分割的平均绝对误差和标准偏差为4.5±3.2微米。因此,所提出的方法为评估水肿提供了一种自动,无创和定量的工具。 相似文献
10.
K. Divakar Rao Aneesh Alex Yogesh Verma Sreeja Thampi Pradeep K. Gupta 《Journal of biophotonics》2009,2(5):288-291
We report noninvasive imaging of the brain of adult Zebrafish (Danio rerio) using real time optical coherence tomography (OCT) capable of acquiring cross sectional 2D OCT images @ 8 frames/sec. Anatomic features such as telencephalon, tectum opticum, eminentia Granularis and cerebellum were clearly resolved in the OCT images. A 3D model of Zebrafish brain was reconstructed, for the first time to our knowledge, using these 2D OCT images. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
11.
Imaging of cardiac tissue structure plays a critical role in the treatment and understanding of cardiovascular disease. Optical coherence tomography (OCT) offers the potential to provide valuable, high‐resolution imaging of cardiac tissue. However, there is a lack of comprehensive OCT imaging data of the human heart, which could improve identification of structural substrates underlying cardiac abnormalities. The objective of this study was to provide qualitative and quantitative analysis of OCT image features throughout the human heart. Fifty human hearts were acquired, and tissues from all chambers were imaged with OCT. Histology was obtained to verify tissue composition. Statistical differences between OCT image features corresponding to different tissue types and chambers were estimated using analysis of variance. OCT imaging provided features that were able to distinguish structures such as thickened collagen, as well as adipose tissue and fibrotic myocardium. Statistically significant differences were found between atria and ventricles in attenuation coefficient, and between adipose and all other tissue types. This study provides an overview of OCT image features throughout the human heart, which can be used for guiding future applications such as OCT‐integrated catheter‐based treatments or ex vivo investigation of structural substrates. 相似文献
12.
Yao Yu Menghan Yu Jian Liu Ning Ding Jiangmei Huang Dong Wan Yuliang Zhao Zhenhe Ma 《Journal of biophotonics》2019,12(11)
The objective of this study is to establish a novel method for continuously monitoring thrombus progression with various outcome measures and to assess the efficacy of antithrombotic drugs in murine thrombosis model in mice. In the study, thrombus was induced in the femoral vein of mice by FeCl3 and monitored over time by spectral‐domain optical coherence tomography (OCT). Three‐dimensional images of thrombi with or without heparin as an antithrombotic agent were obtained from OCT angiography. In addition, several parameters of thrombi were analyzed and compared between control and anticoagulant groups. By using OCT, we were able to trace thrombus generation in the same mouse in real time. We found that in our model heparin reduced thrombus size by ~60% and thrombus cross‐sectional area by 50%. OCT results also show that both time to thrombus size (>0.02mm3) and time to occlusion (>30%) were significantly reduced after heparin addition. This study demonstrates that OCT reliably monitors thrombus generation and progression from various aspects including thrombus size. This enables us to measure the kinetic of thrombosis more accurately, and effectively evaluate the efficacy and activities of antithrombotic drugs. This model may represent a useful tool in antithrombotic drug discoveries in preclinical studies. 相似文献
13.
Jianghua Li Changshui Chen Bingling Chen Zhiyuan Shen Yonghong He Yunfei Xia Songhao Liu 《Journal of biophotonics》2012,5(7):544-549
We tried to explore the intrinsic differences in the optical properties of the four representative NPC cell lines on the models of radiobiology and metastasis by OCT. The scattering coefficients and anisotropies were extracted by fitting the average a‐scan attenuation curves based on the multiple scatter effect. The values of scattering coefficients and anisotropy factors were 5.21 ± 0.11, 5.30 ± 0.09, 5.92 ± 0.21, 6.97 ± 0.22, and 0.892 ± 0.009, 0.886 ± 0.006, 0.884 ± 0.009, 0.86 ± 0.01 for CNE1, CNE2, 5‐8F and 6‐10B pellets (p < 0.05, P = 0.07 for CNE1 and CNE2), respectively. The results showed that the radiobiology and metastasis cell's model could be distinguished obviously; which implied that the corresponding types of NPC tissue might be potentially differentiated by OCT. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
14.
Gábor Márk Somfai Erika Tátrai Lenke Laurik Boglárka E Varga Vera ?lvedy William E Smiddy Robert Tchitnga Anikó Somogyi Delia Cabrera DeBuc 《BMC bioinformatics》2014,15(1)
Background
The sensitivity of Optical Coherence Tomography (OCT) images to identify retinal tissue morphology characterized by early neural loss from normal healthy eyes is tested by calculating structural information and fractal dimension. OCT data from 74 healthy eyes and 43 eyes with type 1 diabetes mellitus with mild diabetic retinopathy (MDR) on biomicroscopy was analyzed using a custom-built algorithm (OCTRIMA) to measure locally the intraretinal layer thickness. A power spectrum method was used to calculate the fractal dimension in intraretinal regions of interest identified in the images. ANOVA followed by Newman-Keuls post-hoc analyses were used to test for differences between pathological and normal groups. A modified p value of <0.001 was considered statistically significant. Receiver operating characteristic (ROC) curves were constructed to describe the ability of each parameter to discriminate between eyes of pathological patients and normal healthy eyes.Results
Fractal dimension was higher for all the layers (except the GCL + IPL and INL) in MDR eyes compared to normal healthy eyes. When comparing MDR with normal healthy eyes, the highest AUROC values estimated for the fractal dimension were observed for GCL + IPL and INL. The maximum discrimination value for fractal dimension of 0.96 (standard error =0.025) for the GCL + IPL complex was obtained at a FD ≤ 1.66 (cut off point, asymptotic 95% Confidence Interval: lower-upper bound = 0.905-1.002). Moreover, the highest AUROC values estimated for the thickness measurements were observed for the OPL, GCL + IPL and OS. Particularly, when comparing MDR eyes with control healthy eyes, we found that the fractal dimension of the GCL + IPL complex was significantly better at diagnosing early DR, compared to the standard thickness measurement.Conclusions
Our results suggest that the GCL + IPL complex, OPL and OS are more susceptible to initial damage when comparing MDR with control healthy eyes. Fractal analysis provided a better sensitivity, offering a potential diagnostic predictor for detecting early neurodegeneration in the retina. 相似文献15.
Aims: Quantifying the ex vivo growth of complex multispecies dental biofilms using cross‐polarization 1310‐nm optical coherence tomography (CP‐OCT) system was investigated. Methods and Results: Bacterial microcosms, which were derived from plaque samples of paediatric subjects, were incubated in a biofilm reactor system containing discs of different dental materials for 72 h with daily sucrose pulsing (5×). CP‐OCT analysis of biofilm mass was validated with crystal violet (CV) assays at various growth stages of these complex biofilms. CP‐OCT was able to filter out the back‐reflected signals of water layers in the hydrated biofilm and allowed for direct biofilm quantification. The overall depth‐resolved scattering intensity of the biofilm showed very strong positive correlation with CV assay quantification (Spearman’s ρ = 0·92) during the growth phase of the biofilm. Conclusion: CP‐OCT was able to quantify the mass of the biofilm by measuring the overall depth‐resolved scattering of the biofilm. Significance and Impact of the Study: CP‐OCT has the ability to nondestructively monitor biofilm growth and elucidate the growth characteristics of these microcosms on different dental material compositions. 相似文献
16.
Bernd Hofer Boris Povazˇay Boris Hermann Sara M. Rey Vedran Kajić Alexandre Tumlinson Kate Powell Gerald Matz Wolfgang Drexler 《Journal of biophotonics》2011,4(5):355-367
Visualization of cell migration during chemotaxis using spectral domain optical coherence tomography (OCT) requires non‐standard processing techniques. Stripe artefacts and camera noise floor present in OCT data prevent detailed computer‐assisted reconstruction and quantification of cell locomotion. Furthermore, imaging artefacts lead to unreliable results in automated texture based cell analysis. Here we characterize three pronounced artefacts that become visible when imaging sample structures with high dynamic range, e.g. cultured cells: (i) time‐varying fixed‐pattern noise; (ii) stripe artefacts generated by background estimation using tomogram averaging; (iii) image modulations due to spectral shaping. We evaluate techniques to minimize the above mentioned artefacts using an 800 nm optical coherence microscope. Effect of artefact reduction is shown exemplarily on two cell cultures, i.e. Dictyostelium on nitrocellulose substrate, and retinal ganglion cells (RGC‐5) cultured on a glass coverslip. Retinal imaging also profits from the proposed processing techniques. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
17.
K‐distribution three‐dimensional mapping of biological tissues in optical coherence tomography 下载免费PDF全文
Probability density function (PDF) analysis with K‐distribution model of optical coherence tomography (OCT) intensity signals has previously yielded a good representation of the average number of scatterers in a coherence volume for microspheres‐in‐water systems, and has shown initial promise for biological tissue characterization. In this work, we extend these previous findings, based on single point M‐mode or two‐dimenstional slice analysis, to full three‐dimensional (3D) imaging maps of the shape parameter α of the K‐distribution PDF. After selecting a suitably sized 3D evaluation window, and verifying methodology in phantoms, the resultant parametric α images obtained in different animal tissues (rat liver and brain) show new contrasting ability not seen in conventional OCT intensity images. 相似文献
18.
In vivo observation of metamorphosis of Plodia interpunctella Hübner using three‐dimensional optical coherence tomography 下载免费PDF全文
Kwang Shik Choi Ruchire Eranga Wijesinghe Changho Lee Seung‐Yeol Lee Hee‐Young Jung Mansik Jeon Jeehyun Kim 《Entomological Research》2017,47(4):256-262
Morphological assessment and three‐dimensional reconstructions of internal structures of Plodia interpunctella Hübner during metamorphosis stages were experimentally demonstrated using optical coherence tomography (OCT) for the first time. The conventional, complex sectioning methods were significantly simplified owing to the non‐invasive three‐dimensional imaging capability of OCT. Further, this study demonstrates the use of OCT as a non‐invasive detection tool for in vivo morphological observation of metamorphosis stages to gain a better understanding about the growth of internal organs, which can be considered a useful discovery in the field of entomology. Thus, the metamorphosis stages starting from the larva, three pupa stages to the adult stage were periodically visualized to examine the development of internal organs at each specific stage. This study essentially offers real‐time morphological information by non‐destructive observation of the organism and can also be useful for the investigation of other agricultural pests. 相似文献
19.
Hsiao-Chuan Liu Mehdi Abbasi Yong Hong Ding Eric C. Polley Seán Fitzgerald Ramanathan Kadirvel David F. Kallmes Waleed Brinjikji Matthew W. Urban 《Journal of biophotonics》2021,14(3):e202000364
Embolectomy is one of the emergency procedures performed to remove emboli. Assessing the composition of human blood clots is an important diagnostic factor and could provide guidance for an appropriate treatment strategy for interventional physicians. Immunostaining has been used to identity compositions of clots as a gold-standard procedure, but it is time-consuming and cannot be performed in situ. Here, we proposed that the optical attenuation coefficient of optical coherence tomography (OCT) can be a reliable indicator as a new imaging modality to differentiate clot compositions. Fifteen human blood clots with multiple red blood cell (RBC) compositions from 21% to 95% were prepared using healthy human whole blood. A homogeneous gelatin phantom experiment and numerical simulation based on the Lambert–Beer's law were examined to verify the validity of the attenuation coefficient estimation. The results displayed that optical attenuation coefficients were strongly correlated with RBC compositions. We reported that attenuation coefficients could be a promising biomarker to guide the choice of an appropriate interventional device in a clinical setting and assist in characterizing blood clots. 相似文献
20.
We propose a cross‐scanning optical coherence tomography (CS‐OCT) system to correct eye motion artifacts in OCT angiography images. This system employs a dual‐illumination configuration with two orthogonally polarized beams, each of which simultaneously perform raster scanning in perpendicular direction with each other over the same area. In the reference arm, a polarization delay unit is used to acquire the two orthogonally polarized interferograms with a single photo detector by introducing different optical delay lines. The two cross‐scanned volume data are affected by the same eye motion but in two orthogonal directions. We developed a motion correction algorithm, which removes artifacts in the slow axis of each angiogram using the other and merges them through a nonrigid registration algorithm. In this manner, we obtained a motion‐corrected angiogram within a single volume scanning time without additional eye‐tracking devices. 相似文献