首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
固有无序蛋白质是一类在生理条件下缺乏稳定三维结构而具有正常功能,参与信号转导、转录调控、胁迫应答等多种生物学过程的蛋白质.植物中许多逆境响应蛋白是固有无序蛋白质,通过其结构无序或部分无序区域在蛋白质 蛋白质、蛋白质 膜脂、蛋白质 核酸的互作中发挥重要作用.本文主要对固有无序蛋白质的类别、氨基酸组成和结构特点以及在逆境胁迫下其稳定细胞膜、保护核酸和蛋白质、调控基因表达等分子功能进行综述,以拓展对逆境胁迫下蛋白质作用分子机制的认识.  相似文献   

2.
3.
NK-lysins are antimicrobial peptides (AMPs) that participate in the innate immune response and also have several pivotal roles in various biological processes. Such multifunctionality is commonly found among intrinsically disordered proteins. However, NK-lysins have never been systematically analyzed for intrinsic disorder. To fill this gap, the amino acid sequences of NK-lysins from various species were collected from UniProt and used for the comprehensive computational analysis to evaluate the propensity of these proteins for intrinsic disorder and to investigate the potential roles of disordered regions in NK-lysin functions. We analyzed abundance and peculiarities of intrinsic disorder distribution in all-known NK-lysins and showed that many NK-lysins are expected to have substantial levels of intrinsic disorder. Curiously, high level of intrinsic disorder was also found even in two proteins with known 3D-strucutres (NK-lysin from pig and human granulysin). Many of the identified disordered regions can be involved in protein–protein interactions. In fact, NK-lysins are shown to contain three to eight molecular recognition features; i.e. short structure-prone segments which are located within the long disordered regions and have a potential to undergo a disorder-to-order transition upon binding to a partner. Furthermore, these disordered regions are expected to have several sites of various posttranslational modifications. Our study shows that NK-lysins, which are AMPs with a set of prominent roles in the innate immune response, are expected to abundantly possess intrinsically disordered regions that might be related to multifunctionality of these proteins in the signal transduction pathways controlling the host response to pathogenic agents.  相似文献   

4.
5.
Chen Wang  Lukasz Kurgan 《Proteomics》2016,16(10):1486-1498
Intrinsically disordered proteins (IDPs) are abundant in various proteomes, where they play numerous important roles and complement biological activities of ordered proteins. Among functions assigned to IDPs are interactions with nucleic acids. However, often, such assignments are made based on the guilty‐by‐association principle. The validity of the extension of these correlations to all nucleic acid binding proteins has never been analyzed on a large scale across all domains of life. To fill this gap, we perform a comprehensive computational analysis of the abundance of intrinsic disorder and intrinsically disordered domains in nucleiomes (~548 000 nucleic acid binding proteins) of 1121 species from Archaea, Bacteria and Eukaryota. Nucleiome is a whole complement of proteins involved in interactions with nucleic acids. We show that relative to other proteins in the corresponding proteomes, the DNA‐binding proteins have significantly increased disorder content and are significantly enriched in disordered domains in Eukaryotes but not in Archaea and Bacteria. The RNA‐binding proteins are significantly enriched in the disordered domains in Bacteria, Archaea and Eukaryota, while the overall abundance of disorder in these proteins is significantly increased in Bacteria, Archaea, animals and fungi. The high abundance of disorder in nucleiomes supports the notion that the nucleic acid binding proteins often require intrinsic disorder for their functions and regulation.  相似文献   

6.
7.
RNA-binding proteins play crucial roles in various cellular functions and contain abundant disordered protein regions. The disordered regions in RNA-binding proteins are rich in repetitive sequences, such as poly-K/R, poly-N/Q, poly-A, and poly-G residues. Our bioinformatic analysis identified a largely neglected repetitive sequence family we define as electronegative clusters (ENCs) that contain acidic residues and/or phosphorylation sites. The abundance and length of ENCs exceed other known repetitive sequences. Despite their abundance, the functions of ENCs in RNA-binding proteins are still elusive. To investigate the impacts of ENCs on protein stability, RNA-binding affinity, and specificity, we selected one RNA-binding protein, the ribosomal biogenesis factor 15 (Nop15), as a model. We found that the Nop15 ENC increases protein stability and inhibits nonspecific RNA binding, but minimally interferes with specific RNA binding. To investigate the effect of ENCs on sequence specificity of RNA binding, we grafted an ENC to another RNA-binding protein, Ser/Arg-rich splicing factor 3. Using RNA Bind-n-Seq, we found that the engineered ENC inhibits disparate RNA motifs differently, instead of weakening all RNA motifs to the same extent. The motif site directly involved in electrostatic interaction is more susceptible to the ENC inhibition. These results suggest that one of functions of ENCs is to regulate RNA binding via electrostatic interaction. This is consistent with our finding that ENCs are also overrepresented in DNA-binding proteins, whereas underrepresented in halophiles, in which nonspecific nucleic acid binding is inhibited by high concentrations of salts.  相似文献   

8.
Allosteric regulatory processes are implicated at all levels of biological function. Recent advances in our understanding of the diverse and functionally significant class of intrinsically disordered proteins have identified a multitude of ways in which disordered proteins function within the confines of the allosteric paradigm. Allostery within or mediated by intrinsically disordered proteins ensures robust and efficient signal integration through mechanisms that would be extremely unfavorable or even impossible for globular protein interaction partners. Here, we highlight recent examples that indicate the breadth of biological outcomes that can be achieved through allosteric regulation by intrinsically disordered proteins. Ongoing and future work in this rapidly evolving area of research will expand our appreciation of the central role of intrinsically disordered proteins in ensuring the fidelity and efficiency of cellular regulation.  相似文献   

9.

Background  

Predicting intrinsically disordered proteins is important in structural biology because they are thought to carry out various cellular functions even though they have no stable three-dimensional structure. We know the structures of far more ordered proteins than disordered proteins. The structural distribution of proteins in nature can therefore be inferred to differ from that of proteins whose structures have been determined experimentally. We know many more protein sequences than we do protein structures, and many of the known sequences can be expected to be those of disordered proteins. Thus it would be efficient to use the information of structure-unknown proteins in order to avoid training data sparseness. We propose a novel method for predicting which proteins are mostly disordered by using spectral graph transducer and training with a huge amount of structure-unknown sequences as well as structure-known sequences.  相似文献   

10.
Distinct substructures within the nucleus are associated with a wide variety of important nuclear processes.Structures such as chromatin and nuclear pores have specific roles,while others such as Cajal bodies are more functionally varied.Understanding the roles of these membraneless intra-nuclear compartments requires extensive data sets covering nuclear and compartment-associated proteins.NSort/DB is a database providing access to intra-or sub-nuclear compartment associations for the mouse nuclear proteome.Based on resources ranging from large-scale curated data sets to detailed experiments,this data set provides a high-quality set of annotations of non-exclusive association of nuclear proteins with structures such as promyelocytic leukaemia bodies and chromatin.The database is searchable by protein identifier or compartment,and has a documented web service API.The search interface,web service and data download are all freely available online at http://www.nsort.org/db/.Availability of this data set will enable systematic analyses of the protein complements of nuclear compartments,improving our understanding of the diverse functional repertoire of these structures.  相似文献   

11.
Proteins with long disordered regions (LDRs), defined as having 30 or more consecutive disordered residues, are abundant in eukaryotes, and these regions are recognized as a distinct class of biologically functional domains. LDRs facilitate various cellular functions and are important for target selection in structural genomics. Motivated by the lack of methods that directly predict proteins with LDRs, we designed Super‐fast predictor of proteins with Long Intrinsically DisordERed regions (SLIDER). SLIDER utilizes logistic regression that takes an empirically chosen set of numerical features, which consider selected physicochemical properties of amino acids, sequence complexity, and amino acid composition, as its inputs. Empirical tests show that SLIDER offers competitive predictive performance combined with low computational cost. It outperforms, by at least a modest margin, a comprehensive set of modern disorder predictors (that can indirectly predict LDRs) and is 16 times faster compared to the best currently available disorder predictor. Utilizing our time‐efficient predictor, we characterized abundance and functional roles of proteins with LDRs over 110 eukaryotic proteomes. Similar to related studies, we found that eukaryotes have many (on average 30.3%) proteins with LDRs with majority of proteomes having between 25 and 40%, where higher abundance is characteristic to proteomes that have larger proteins. Our first‐of‐its‐kind large‐scale functional analysis shows that these proteins are enriched in a number of cellular functions and processes including certain binding events, regulation of catalytic activities, cellular component organization, biogenesis, biological regulation, and some metabolic and developmental processes. A webserver that implements SLIDER is available at http://biomine.ece.ualberta.ca/SLIDER/ .Proteins 2014; 82:145–158. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
It is recognized now that intrinsically disordered proteins (IDPs), which do not have unique 3D structures as a whole or in noticeable parts, constitute a significant fraction of any given proteome. IDPs are characterized by an astonishing structural and functional diversity that defines their ability to be universal regulators of various cellular pathways. Programmed cell death (PCD) is one of the most intricate cellular processes where the cell uses specialized cellular machinery and intracellular programs to kill itself. This cell-suicide mechanism enables metazoans to control cell numbers and to eliminate cells that threaten the animal''s survival. PCD includes several specific modules, such as apoptosis, autophagy, and programmed necrosis (necroptosis). These modules are not only tightly regulated but also intimately interconnected and are jointly controlled via a complex set of protein–protein interactions. To understand the role of the intrinsic disorder in controlling and regulating the PCD, several large sets of PCD-related proteins across 28 species were analyzed using a wide array of modern bioinformatics tools. This study indicates that the intrinsic disorder phenomenon has to be taken into consideration to generate a complete picture of the interconnected processes, pathways, and modules that determine the essence of the PCD. We demonstrate that proteins involved in regulation and execution of PCD possess substantial amount of intrinsic disorder. We annotate functional roles of disorder across and within apoptosis, autophagy, and necroptosis processes. Disordered regions are shown to be implemented in a number of crucial functions, such as protein–protein interactions, interactions with other partners including nucleic acids and other ligands, are enriched in post-translational modification sites, and are characterized by specific evolutionary patterns. We mapped the disorder into an integrated network of PCD pathways and into the interactomes of selected proteins that are involved in the p53-mediated apoptotic signaling pathway.  相似文献   

13.
LIM proteins: association with the actin cytoskeleton   总被引:1,自引:0,他引:1  
The LIM domain is an evolutionary conserved double-zinc finger motif found in a variety of proteins exhibiting diverse biological roles. LIM domains have been observed to act as modular protein-binding interfaces mediating protein-protein interactions in the cytoplasm and the nucleus. Interaction of LIM domains with specific protein partners is now known to influence its subcellular localization and activity; however, no single binding motif has been identified as a common target for LIM domains. Several LIM domain-containing proteins associated with the actin cytoskeleton have been identified, playing a role in signal transduction and organization of the actin filaments during various cellular processes.  相似文献   

14.
固有无序蛋白(intrinsically disordered proteins,IDPs)是指在生理条件下缺乏有序稳定的高级结构,整体或局部不折叠,但能够参与多种生物学过程、行使特定生物学功能的一类蛋白质.固有无序蛋白决定了其不同于经典蛋白质"序列-结构-功能"的功能范式,丰富了蛋白质"结构-功能"的多样性.固有无序...  相似文献   

15.
Recent studies have shown that premature cellular senescence and normal organ development and function depend on the type V intermediate filament proteins, the lamins, which are major structural proteins of the nucleus. This review presents an up-to-date summary of the literature describing new findings on lamin functions in various cellular processes and emphasizes the relationship between the lamins and devastating diseases ranging from premature aging to cancer. Recent insights into the structure and function of the A- and B- type lamins in normal cells and their dysfunctions in diseased cells are providing novel targets for the development of new diagnostic procedures and disease intervention. We summarize these recent findings, focusing on data from mice and humans, and highlight the expanding knowledge of these proteins in both healthy and diseased cells.  相似文献   

16.
Because intrinsically disordered proteins are incapable of forming unique tertiary structures in isolation, their interaction with partner structures enables them to play important roles in many different biological functions. Therefore, such proteins are usually multifunctional, and their ability to perform their major function, as well as accessory functions, depends on the characteristics of a given interaction. The present paper demonstrates, using predictions from two programs, that the transmembrane proteoglycans syndecans are natively disordered because of their diverse functions and large number of interaction partners. Syndecans perform multiple functions during development, damage repair, tumor growth, angiogenesis, and neurogenesis. By mediating the binding of a large number of extracellular ligands to their receptors, these proteoglycans trigger a cascade of reactions that subsequently regulate various cell processes: cytoskeleton formation, proliferation, differentiation, adhesion, and migration. The occurrences of 20 amino acids in syndecans 1–4 from 25 animals were compared with those in 17 animal proteomes. Gly?+?Ala, Thr, Glu, and Pro were observed to predominate in the syndecans, contributing to the lack of an ordered structure. In contrast, there were many fewer amino acids in syndecans that promote an ordered structure, such as Cys, Trp, Asn, and His. In addition, a region rich in Asp has been identified between two heparan sulfate-binding sites in the ectodomains, and a region rich in Lys has been identified in the conserved C1 site of the cytoplasmic domain. These particular regions play an essential role in the various functions of syndecans due to their lack of structure.  相似文献   

17.
18.
Currently, the understanding of the relationships between function, amino acid sequence, and protein structure continues to represent one of the major challenges of the modern protein science. As many as 50% of eukaryotic proteins are likely to contain functionally important long disordered regions. Many proteins are wholly disordered but still possess numerous biologically important functions. However, the number of experimentally confirmed disordered proteins with known biological functions is substantially smaller than their actual number in nature. Therefore, there is a crucial need for novel bionformatics approaches that allow projection of the current knowledge from a few experimentally verified examples to much larger groups of known and potential proteins. The elaboration of a bioinformatics tool for the analysis of functional diversity of intrinsically disordered proteins and application of this data mining tool to >200 000 proteins from the Swiss-Prot database, each annotated with at least one of the 875 functional keywords, was described in the first paper of this series (Xie, H.; Vucetic, S.; Iakoucheva, L. M.; Oldfield, C. J.; Dunker, A. K.; Obradovic, Z.; Uversky, V.N. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J. Proteome Res. 2007, 5, 1882-1898). Using this tool, we have found that out of the 710 Swiss-Prot functional keywords associated with at least 20 proteins, 262 were strongly positively correlated with long intrinsically disordered regions, and 302 were strongly negatively correlated. Illustrative examples of functional disorder or order were found for the vast majority of keywords showing strongest positive or negative correlation with intrinsic disorder, respectively. Some 80 Swiss-Prot keywords associated with disorder- and order-driven biological processes and protein functions were described in the first paper (see above). The second paper of the series was devoted to the presentation of 87 Swiss-Prot keywords attributed to the cellular components, domains, technical terms, developmental processes, and coding sequence diversities possessing strong positive and negative correlation with long disordered regions (Vucetic, S.; Xie, H.; Iakoucheva, L. M.; Oldfield, C. J.; Dunker, A. K.; Obradovic, Z.; Uversky, V. N. Functional anthology of intrinsic disorder. 2. Cellular components, domains, technical terms, developmental processes, and coding sequence diversities correlated with long disordered regions. J. Proteome Res. 2007, 5, 1899-1916). Protein structure and functionality can be modulated by various post-translational modifications or/and as a result of binding of specific ligands. Numerous human diseases are associated with protein misfolding/misassembly/misfunctioning. This work concludes the series of papers dedicated to the functional anthology of intrinsic disorder and describes approximately 80 Swiss-Prot functional keywords that are related to ligands, post-translational modifications, and diseases possessing strong positive or negative correlation with the predicted long disordered regions in proteins.  相似文献   

19.
20.
The nuclear matrix, besides providing the structural support of the nucleus, is involved in various cellular functions of the nucleus. Nuclear matrix proteins (NMPs), which are both tissue- and cell type–specific, are altered with transformation and state of differentiation. Furthermore, NMPs have been identified as informative markers of disease states. Here, the NMP profiles from human breast cancer cell lines and breast tumours were analyzed using two-dimension gel electrophoresis. We identified NMPs that are associated with well and poorly differentiated human breast cancer cells in vitro and in vivo. Five NMPs (NMBC 1–5) were found to be exclusive for well-differentiated human breast cancer cells, while one NMP (NMBC-6) was found to be present only in poorly differentiated human breast cancer cells. The identification of these proteins suggests the potential use of nuclear matrix proteins as prognostic indicators. J. Cell. Biochem. 66:9–15, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号