共查询到20条相似文献,搜索用时 0 毫秒
1.
CLIP-170 highlights growing microtubule ends in vivo 总被引:18,自引:0,他引:18
A chimera with the green fluorescent protein (GFP) has been constructed to visualize the dynamic properties of the endosome-microtubule linker protein CLIP170 (GFP-CLIP170). GFP-CLIP170 binds in stretches along a subset of microtubule ends. These fluorescent stretches appear to move with the growing tips of microtubules at 0.15-0.4 microm/s, comparable to microtubule elongation in vivo. Analysis of speckles along dynamic GFP-CLIP170 stretches suggests that CLIP170 treadmills on growing microtubule ends, rather than being continuously transported toward these ends. Drugs affecting microtubule dynamics rapidly inhibit movement of GFP-CLIP170 dashes. We propose that GFP-CLIP170 highlights growing microtubule ends by specifically recognizing the structure of a segment of newly polymerized tubulin. 相似文献
2.
3.
Lopus M Manatschal C Buey RM Bjelić S Miller HP Steinmetz MO Wilson L 《Biochemistry》2012,51(14):3021-3030
End binding protein 1 (EB1) and cytoplasmic linker protein of 170 kDa (CLIP-170) are two well-studied microtubule plus-end-tracking proteins (+TIPs) that target growing microtubule plus ends in the form of comet tails and regulate microtubule dynamics. However, the mechanism by which they regulate microtubule dynamics is not well understood. Using full-length EB1 and a minimal functional fragment of CLIP-170 (ClipCG12), we found that EB1 and CLIP-170 cooperatively regulate microtubule dynamic instability at concentrations below which neither protein is effective. By use of small-angle X-ray scattering and analytical ultracentrifugation, we found that ClipCG12 adopts a largely extended conformation with two noninteracting CAP-Gly domains and that it formed a complex in solution with EB1. Using a reconstituted steady-state mammalian microtubule system, we found that at a low concentration of 250 nM, neither EB1 nor ClipCG12 individually modulated plus-end dynamic instability. Higher concentrations (up to 2 μM) of the two proteins individually did modulate dynamic instability, perhaps by a combination of effects at the tips and along the microtubule lengths. However, when low concentrations (250 nM) of EB1 and ClipCG12 were present together, the mixture modulated dynamic instability considerably. Using a pulsing strategy with [γ(32)P]GTP, we further found that unlike EB1 or ClipCG12 alone, the EB1-ClipCG12 mixture partially depleted the microtubule ends of stably bound (32)P(i). Together, our results suggest that EB1 and ClipCG12 act cooperatively to regulate microtubule dynamics. They further indicate that stabilization of microtubule plus ends by the EB1-ClipCG12 mixture may involve modification of an aspect of the stabilizing cap. 相似文献
4.
BACKGROUND: CLIP-170 is a microtubule binding protein specifically located at microtubule plus ends, where it modulates their dynamic properties and their interactions with intracellular organelles. The mechanism by which CLIP-170 is targeted to microtubule ends remains unclear today, as well as its precise effect on microtubule dynamics. RESULTS: We used the N-terminal part of CLIP-170 (named H2), which contains the microtubule binding domains, to investigate how it modulates in vitro microtubule dynamics and structure. We found that H2 primarily promoted rescues (transitions from shrinkage to growth) of microtubules nucleated from pure tubulin and isolated centrosomes, and stimulated microtubule nucleation. Electron cryomicroscopy revealed that H2 induced the formation of tubulin rings in solution and curved oligomers at the extremities of microtubules in assembly conditions. CONCLUSIONS: These results suggest that CLIP-170 targets specifically at microtubule plus ends by copolymerizing with tubulin and modulates microtubule nucleation, polymerization, and rescues by the same basic mechanism with tubulin oligomers as intermediates. 相似文献
5.
Microtubule plus end binding proteins (+TIPs) localize to the dynamic plus ends of microtubules, where they stimulate microtubule growth and recruit signaling molecules. Three main +TIP classes have been identified (XMAP215, EB1, and CLIP-170), but whether they act upon microtubule plus ends through a similar mechanism has not been resolved. Here, we report crystal structures of the tubulin binding domains of XMAP215 (yeast Stu2p and Drosophila Msps), EB1 (yeast Bim1p and human EB1), and CLIP-170 (human), which reveal diverse tubulin binding interfaces. Functional studies, however, reveal a common property that native or artificial dimerization of tubulin binding domains (including chemically induced heterodimers of EB1 and CLIP-170) induces tubulin nucleation/assembly in vitro and, in most cases, plus end tracking in living cells. We propose that +TIPs, although diverse in structure, share a common property of multimerizing tubulin, thus acting as polymerization chaperones that aid in subunit addition to the microtubule plus end. 相似文献
6.
CLIP-170 family proteins regulate microtubule plus end dynamics. Two reports published in this issue of Developmental Cell show that Bik1 and tip1p, the CLIP-170-like proteins of budding and fission yeast, are carried to microtubule plus ends by kinesin motor proteins. These findings indicate a complex interplay between microtubule-associated proteins and suggest a novel mechanism by which kinesin proteins stabilize microtubules. 相似文献
7.
Kamlesh K. Gupta Aranda R. Slabbekoorn Benjamin A. Paulson Holly V. Goodson 《Journal of molecular biology》2010,395(5):1049-774
Cytoplasmic linker protein 170 (CLIP-170) is a microtubule (MT) plus-end tracking protein (+ TIP) that dynamically localizes to the MT plus end and regulates MT dynamics. The mechanisms of these activities remain unclear because the CLIP-170-MT interaction is poorly understood, and even less is known about how CLIP-170 and other + TIPs act together as a network. CLIP-170 binds to the acidic C-terminal tail of α-tubulin. However, the observation that CLIP-170 has two CAP-Gly (cytoskeleton-associated protein glycine-rich) motifs and multiple serine-rich regions suggests that a single CLIP-170 molecule has multiple tubulin binding sites, and that these sites might bind to multiple parts of the tubulin dimer. Using a combination of chemical cross-linking and mass spectrometry, we find that CLIP-170 binds to both α-tubulin and β-tubulin, and that binding is not limited to the acidic C-terminal tails. We provide evidence that these additional binding sites include the H12 helices of both α-tubulin and β-tubulin and are significant for CLIP-170 activity. Previous work has shown that CLIP-170 binds to end-binding protein 1 (EB1) via the EB1 C-terminus, which mimics the acidic C-terminal tail of tubulin. We find that CLIP-170 can utilize its multiple tubulin binding sites to bind to EB1 and MT simultaneously. These observations help to explain how CLIP-170 can nucleate MTs and alter MT dynamics, and they contribute to understanding the significance and properties of the + TIP network. 相似文献
8.
CLIP-170 interacts with dynactin complex and the APC-binding protein EB1 by different mechanisms 总被引:4,自引:0,他引:4
Goodson HV Skube SB Stalder R Valetti C Kreis TE Morrison EE Schroer TA 《Cell motility and the cytoskeleton》2003,55(3):156-173
CLIP-170 is a "cytoplasmic linker protein" implicated in endosome-microtubule interactions and in control of microtubule dynamics. CLIP-170 localizes dynamically to growing microtubule plus ends, colocalizing with the dynein activator dynactin and the APC-binding protein EB1. This shared "plus-end tracking" behavior suggests that CLIP-170 might interact with dynactin and/or EB1. We have used site-specific mutagenesis of CLIP-170 and a transfection/colocalization assay to address this question in mammalian tissue culture cells. Our results indicate that CLIP-170 interacts, directly or indirectly, with both dynactin and EB1. We find that the CLIP-170/dynactin interaction is mediated by the second metal binding motif of the CLIP-170 tail. In contrast, the CLIP-170/EB1 interaction requires neither metal binding motif. In addition, our experiments suggest that the CLIP-170/dynactin interaction occurs via the shoulder/sidearm subcomplex of dynactin and can occur in the cytosol (i.e., it does not require microtubule binding). These results have implications for the targeting of both dynactin and EB1 to microtubule plus ends. Our data suggest that the CLIP-170/dynactin interaction can target dynactin complex to microtubule plus ends, although dynactin likely also targets MT plus ends directly via the microtubule binding motif of the p150(Glued) subunit. We find that CLIP-170 mutants alter p150(Glued) localization without affecting EB1, indicating that EB1 can target microtubule plus ends independently of dynactin. 相似文献
9.
In plants, it is unclear how dispersed cortical microtubules are nucleated, polarized and organized in the absence of centrosomes. In Arabidopsis thaliana cells, expression of a fusion between the microtubule-end-binding protein AtEB1a and green fluorescent protein (GFP) results in labelling of spindle poles, where minus ends gather. During interphase, AtEB1a-GFP labels the microtubule plus end as a comet, but also marks the minus end as a site from which microtubules can grow and shrink. These minus-end nucleation sites are mobile, explaining how the cortical array can redistribute during the cell cycle and supporting the idea of a flexible centrosome in plants. 相似文献
10.
EB1 and EB3 control CLIP dissociation from the ends of growing microtubules 总被引:8,自引:0,他引:8 下载免费PDF全文
Komarova Y Lansbergen G Galjart N Grosveld F Borisy GG Akhmanova A 《Molecular biology of the cell》2005,16(11):5334-5345
EBs and CLIPs are evolutionarily conserved proteins, which associate with the tips of growing microtubules, and regulate microtubule dynamics and their interactions with intracellular structures. In this study we investigated the functional relationship of CLIP-170 and CLIP-115 with the three EB family members, EB1, EB2(RP1), and EB3 in mammalian cells. We showed that both CLIPs bind to EB proteins directly. The C-terminal tyrosine residue of EB proteins is important for this interaction. When EB1 and EB3 or all three EBs were significantly depleted using RNA interference, CLIPs accumulated at the MT tips at a reduced level, because CLIP dissociation from the tips was accelerated. Normal CLIP localization was restored by expression of EB1 but not of EB2. An EB1 mutant lacking the C-terminal tail could also fully rescue CLIP dissociation kinetics, but could only partially restore CLIP accumulation at the tips, suggesting that the interaction of CLIPs with the EB tails contributes to CLIP localization. When EB1 was distributed evenly along the microtubules because of overexpression, it slowed down CLIP dissociation but did not abolish its preferential plus-end localization, indicating that CLIPs possess an intrinsic affinity for growing microtubule ends, which is enhanced by an interaction with the EBs. 相似文献
11.
12.
Microtubule plus-end proteins CLIP-170 and EB1 dynamically track the tips of growing microtubules in vivo. Here we examine the association of these proteins with microtubules in vitro. CLIP-170 binds tubulin dimers and co-assembles into growing microtubules. EB1 binds tubulin dimers more weakly, so no co-assembly is observed. However, EB1 binds to CLIP-170, and forms a co-complex with CLIP-170 and tubulin that is recruited to growing microtubule plus ends. The interaction between CLIP-170 and EB1 is competitively inhibited by the related CAP-Gly protein p150Glued, which also localizes to microtubule plus ends in vivo. Based on these observations, we propose a model in which the formation of distinct plus-end complexes may differentially affect microtubule dynamics in vivo. 相似文献
13.
Microtubule plus ends are dynamically regulated by a wide variety of proteins for performing diverse cellular functions. Here, we show that the fission yeast Schizosaccharomyces pombe uncharacterized protein mcp1p is a microtubule plus-end tracking protein which depends on the kinesin-8 klp6p for transporting along microtubules towards microtubule plus ends. In the absence of mcp1p, microtubule catastrophe and rescue frequencies decrease, leading to an increased dwell time of microtubule plus ends at cell tips. Thus, these findings suggest that mcp1p may synergize with klp6p at microtubule plus-ends to destabilize microtubules. 相似文献
14.
Members of the Rho/Rac/Cdc42 superfamily of GTPases and their upstream activators, guanine nucleotide exchange factors (GEFs) , have emerged as key regulators of actin and microtubule dynamics. In their GTP bound form, these proteins interact with downstream effector molecules that alter actin and microtubule behavior. During Drosophila embryogenesis, a Galpha subunit (Concertina) and a Rho-type guanine nucleotide exchange factor (DRhoGEF2) have been implicated in the dramatic epithelial-cell shape changes that occur during gastrulation and morphogenesis . Using Drosophila S2 cells as a model system, we show that DRhoGEF2 induces contractile cell shape changes by stimulating myosin II via the Rho1 pathway. Unexpectedly, we found that DRhoGEF2 travels to the cell cortex on the tips of growing microtubules by interaction with the microtubule plus-end tracking protein EB1. The upstream activator Concertina, in its GTP but not GDP bound form, dissociates DRhoGEF2 from microtubule tips and also causes cellular contraction. We propose that DRhoGEF2 uses microtubule dynamics to search for cortical subdomains of receptor-mediated Galpha activation, which in turn causes localized actomyosin contraction associated with morphogenetic movements during development. 相似文献
15.
CLIPs are microtubule plus end-associated proteins that mediate interactions required for cell polarity and cell division. Here we demonstrate that budding yeast Bik1, unlike its human ortholog CLIP-170, is targeted to the microtubule plus end by a kinesin-dependent transport mechanism. Bik1 forms a complex with the kinesin Kip2. Fluorescently labeled Bik1 and Kip2 comigrate along individual microtubules. Bik1 exists in distinct intracellular pools: a stable pool at the spindle pole body that is depleted during cell cycle progression, a soluble pool from which Bik1 can be recruited during microtubule initiation, and a dynamic plus end pool maintained by Kip2. Kip2 stabilizes microtubules by targeting Bik1 to the plus end and Kip2 levels are controlled during the cell cycle. As with Bik1, the targeting of dynein to the microtubule plus end requires Kip2. These findings reveal a central role for Kip2-dependent transport in the cell cycle control of microtubule dynamics and dynein-dependent motility. 相似文献
16.
Adenomatous polyposis coli on microtubule plus ends in cell extensions can promote microtubule net growth with or without EB1 下载免费PDF全文
In interphase cells, the adenomatous polyposis coli (APC) protein accumulates on a small subset of microtubules (MTs) in cell protrusions, suggesting that APC may regulate the dynamics of these MTs. We comicroinjected a nonperturbing fluorescently labeled monoclonal antibody and labeled tubulin to simultaneously visualize dynamics of endogenous APC and MTs in living cells. MTs decorated with APC spent more time growing and had a decreased catastrophe frequency compared with non-APC-decorated MTs. Endogenous APC associated briefly with shortening MTs. To determine the relationship between APC and its binding partner EB1, we monitored EB1-green fluorescent protein and endogenous APC concomitantly in living cells. Only a small fraction of EB1 colocalized with APC at any one time. APC-deficient cells and EB1 small interfering RNA showed that EB1 and APC localized at MT ends independently. Depletion of EB1 did not change the growth-stabilizing effects of APC on MT plus ends. In addition, APC remained bound to MTs stabilized with low nocodazole, whereas EB1 did not. Thus, we demonstrate that the association of endogenous APC with MT ends correlates directly with their increased growth stability, that this can occur independently of its association with EB1, and that APC and EB1 can associate with MT plus ends by distinct mechanisms. 相似文献
17.
Coquelle FM Caspi M Cordelières FP Dompierre JP Dujardin DL Koifman C Martin P Hoogenraad CC Akhmanova A Galjart N De Mey JR Reiner O 《Molecular and cellular biology》2002,22(9):3089-3102
CLIP-170 is a plus-end tracking protein which may act as an anticatastrophe factor. It has been proposed to mediate the association of dynein/dynactin to microtubule (MT) plus ends, and it also binds to kinetochores in a dynein/dynactin-dependent fashion, both via its C-terminal domain. This domain contains two zinc finger motifs (proximal and distal), which are hypothesized to mediate protein-protein interactions. LIS1, a protein implicated in brain development, acts in several processes mediated by the dynein/dynactin pathway by interacting with dynein and other proteins. Here we demonstrate colocalization and direct interaction between CLIP-170 and LIS1. In mammalian cells, LIS1 recruitment to kinetochores is dynein/dynactin dependent, and recruitment there of CLIP-170 is dependent on its site of binding to LIS1, located in the distal zinc finger motif. Overexpression of CLIP-170 results in a zinc finger-dependent localization of a phospho-LIS1 isoform and dynactin to MT bundles, raising the possibility that CLIP-170 and LIS1 regulate dynein/dynactin binding to MTs. This work suggests that LIS1 is a regulated adapter between CLIP-170 and cytoplasmic dynein at sites involved in cargo-MT loading, and/or in the control of MT dynamics. 相似文献
18.
Kristina A. Blake-Hodek Lynne Cassimeris Tim C. Huffaker 《Molecular biology of the cell》2010,21(12):2013-2023
Microtubule dynamics are regulated by plus-end tracking proteins (+TIPs), which bind microtubule ends and influence their polymerization properties. In addition to binding microtubules, most +TIPs physically associate with other +TIPs, creating a complex web of interactions. To fully understand how +TIPs regulate microtubule dynamics, it is essential to know the intrinsic biochemical activities of each +TIP and how +TIP interactions affect these activities. Here, we describe the activities of Bim1 and Bik1, two +TIP proteins from budding yeast and members of the EB1 and CLIP-170 families, respectively. We find that purified Bim1 and Bik1 form homodimers that interact with each other to form a tetramer. Bim1 binds along the microtubule lattice but with highest affinity for the microtubule end; however, Bik1 requires Bim1 for localization to the microtubule lattice and end. In vitro microtubule polymerization assays show that Bim1 promotes microtubule assembly, primarily by decreasing the frequency of catastrophes. In contrast, Bik1 inhibits microtubule assembly by slowing growth and, consequently, promoting catastrophes. Interestingly, the Bim1-Bik1 complex affects microtubule dynamics in much the same way as Bim1 alone. These studies reveal new activities for EB1 and CLIP-170 family members and demonstrate how interactions between two +TIP proteins influence their activities. 相似文献
19.
TIP maker and TIP marker; EB1 as a master controller of microtubule plus ends 总被引:1,自引:0,他引:1 下载免费PDF全文
Vaughan KT 《The Journal of cell biology》2005,171(2):197-200
The EB1 protein is a member of the exciting and enigmatic family of microtubule (MT) tip-tracking proteins. EB1 acts as an exquisite marker of dynamic MT plus ends in some cases, whereas in others EB1 is thought to directly dictate the behavior of the plus ends. How EB1 differentiates between these two roles remains unclear; however, a growing list of interactions between EB1 and other MT binding proteins suggests there may be a single mechanism. Adding another layer of complexity to these interactions, two studies published in this issue implicate EB1 in cross-talk between mitotic MTs and between MTs and actin filaments (Goshima et al., p. 229; Wu et al., p. 201). These results raise the possibility that EB1 is a central player in MT-based transport, and that the activity of MT-binding proteins depends on their ability or inability to interact with EB1. 相似文献