首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Slick (Slo2.1) and Slack (Slo2.2) channels belong to the family of high-conductance K+ channels and have been found widely distributed in the CNS. Both channels are activated by Na+ and Cl and, in addition, Slick channels are regulated by ATP. Therefore, the roles of these channels in regulation of cell excitability as well as ion transport processes, like regulation of cell volume, have been hypothesized. It is the aim of this work to evaluate the sensitivity of Slick and Slack channels to small, fast changes in cell volume and to explore mechanisms, which may explain this type of regulation. For this purpose Slick and Slack channels were co-expressed with aquaporin 1 in Xenopus laevis oocytes and cell volume changes of around 5% were induced by exposure to hypotonic or hypertonic media. Whole-cell currents were measured by two electrode voltage clamp. Our results show that Slick channels are dramatically stimulated (196% of control) by cell swelling and inhibited (57% of control) by a decrease in cell volume. In contrast, Slack channels are totally insensitive to similar cell volume changes. The mechanism underlining the strong volume sensitivity of Slick channels needs to be further explored, however we were able to show that it does not depend on an intact actin cytoskeleton, ATP release or vesicle fusion. In conclusion, Slick channels, in contrast to the similar Slack channels, are the only high-conductance K+ channels strongly sensitive to small changes in cell volume.  相似文献   

2.
Gating of Slo1 calcium- and voltage-gated potassium (BK) channels involves allosteric interactions among the channel pore, voltage sensors, and Ca(2+)-binding domains. The allosteric activation of the Slo1 channel is in turn modulated by a variety of regulatory processes, including oxidation. Cysteine oxidation alters functional properties of Slo1 channels and has been suggested to contribute to the decrease in the channel activity following patch excision often referred to as rundown. This study examined the biophysical mechanism of rundown and whether oxidation of cysteine residues located in the C-terminus of the human Slo1 channel (C430 and C911) plays a role. Comparison of the changes in activation properties in different concentrations of Ca(2+) among the wild-type, C430A, and C911A channels during rundown and by treatment with the oxidant hydrogen peroxide showed that oxidation of C430 and C911 markedly contributes to the rundown process.  相似文献   

3.
Slo3 channels belong to the high conductance Slo K+ channel family. They are activated by voltage and intracellular alkalinization, and have a K+/Na+ permeability ratio (PK/PNa) of only approximately 5. Slo3 channels have only been found in mammalian sperm. Here we show that Slo3 channels expressed in Xenopus oocytes are also stimulated by elevated cAMP levels through PKA dependent phosphorylation. Capacitation, a maturational process required by mammalian sperm to enable them to fertilize eggs, involves intracellular alkalinization and an increase in cAMP. Our mouse sperm patch clamp recordings have revealed a K+ current that is time and voltage dependent, is activated by intracellular alkalinization, has a PK/PNa ? 5, is weakly blocked by TEA and is very sensitive to Ba2+. This current is also stimulated by cAMP. All of these properties match those displayed by heterologously expressed Slo3 channels, suggesting that the native current we observe in sperm is indeed carried by Slo3 channels.  相似文献   

4.
Potassium channels play a vital role in maintaining the membrane potential and the driving force for anion secretion in epithelia. In pancreatic ducts, which secrete bicarbonate-rich fluid, the identity of K(+) channels has not been extensively investigated. In this study, we investigated the molecular basis of functional K(+) channels in rodent and human pancreatic ducts (Capan-1, PANC-1, and CFPAC-1) using molecular and electrophysiological techniques. RT-PCR analysis revealed mRNAs for KCNQ1, KCNH2, KCNH5, KCNT1, and KCNT2, as well as KCNN4 coding for the following channels: KVLQT1; HERG; EAG2; Slack; Slick; and an intermediate-conductance Ca(2+)-activated K(+) (IK) channel (K(Ca)3.1). The following functional studies were focused on the IK channel. 5,6-Dichloro-1-ethyl-1,3-dihydro-2H-benzimidazole-2-one (DC-EBIO), an activator of IK channel, increased equivalent short-circuit current (I(sc)) in Capan-1 monolayer, consistent with a secretory response. Clotrimazole, a blocker of IK channel, inhibited I(sc). IK channel blockers depolarized the membrane potential of cells in microperfused ducts dissected from rodent pancreas. Cell-attached patch-clamp single-channel recordings revealed IK channels with an average conductance of 80 pS in freshly isolated rodent duct cells. These results indicated that the IK channels may, at least in part, be involved in setting the resting membrane potential. Furthermore, the IK channels are involved in anion and potassium transport in stimulated pancreatic ducts.  相似文献   

5.
Slo2 potassium channels have a very low open probability under normal physiological conditions, but are readily activated in response to an elevated [Na+]i (e.g. during ischemia). An intracellular Na+ coordination motif (DX(R/K)XXH) was previously identified in Kir3.2, Kir3.4, Kir5.1, and Slo2.2 channel subunits. Based loosely on this sequence, we identified five potential Na+ coordination motifs in the C terminus of the Slo2.1 subunit. The Asp residue in each sequence was substituted with Arg, and single mutant channels were heterologously expressed in Xenopus oocytes. The Na+ sensitivity of each of the mutant channels was assessed by voltage clamp of oocytes using micropipettes filled with 2 m NaCl. Wild-type channels and four of the mutant Slo2.1 channels were rapidly activated by leakage of NaCl solution into the cytoplasm. D757R Slo2.1 channels were not activated by NaCl, but were activated by the fenamate niflumic acid, confirming their functional expression. In whole cell voltage clamp recordings of HEK293 cells, wild-type but not D757R Slo2.1 channels were activated by a [NaCl]i of 70 mm. Thus, a single Asp residue can account for the sensitivity of Slo2.1 channels to intracellular Na+. In excised inside-out macropatches of HEK293 cells, activation of wild-type Slo2.1 currents by 3 mm niflumic acid was 14-fold greater than activation achieved by increasing [NaCl]i from 3 to 100 mm. Thus, relative to fenamates, intracellular Na+ is a poor activator of Slo2.1.  相似文献   

6.
The Slo3 gene encodes a high conductance potassium channel, which is activated by both voltage and intracellular alkalinization. Slo3 is specifically expressed in mammalian sperm cells, where it gives rise to pH-dependent outwardly rectifying K+ currents. Sperm Slo3 is the main current responsible for the capacitation-induced hyperpolarization, which is required for the ensuing acrosome reaction, an exocytotic process essential for fertilization. Here we show that in intact spermatozoa and in a heterologous expression system, the activation of Slo3 currents is regulated by phosphatidylinositol 4,5-bisphosphate (PIP2). Depletion of endogenous PIP2 in inside-out macropatches from Xenopus oocytes inhibited heterologously expressed Slo3 currents. Whole-cell recordings of sperm Slo3 currents or of Slo3 channels co-expressed in Xenopus oocytes with epidermal growth factor receptor, demonstrated that stimulation by epidermal growth factor (EGF) could inhibit channel activity in a PIP2-dependent manner. High concentrations of PIP2 in the patch pipette not only resulted in a strong increase in sperm Slo3 current density but also prevented the EGF-induced inhibition of this current. Mutation of positively charged residues involved in channel-PIP2 interactions enhanced the EGF-induced inhibition of Slo3 currents. Overall, our results suggest that PIP2 is an important regulator for Slo3 activation and that receptor-mediated hydrolysis of PIP2 leads to inhibition of Slo3 currents both in native and heterologous expression systems.  相似文献   

7.
8.
The alpha-KTx peptide toxins inhibit different types of potassium channels by occluding the outer channel pore composed of four identical alpha subunits. The large-conductance, calcium-activated (BK or Slo1) and voltage-dependent (KV) potassium channels differ in their specificity for the different alpha-KTx subfamilies. While many different alpha-KTx subfamilies of different sizes inhibit KV1 channels with high affinity, only one subfamily, alpha-KTx 1.x, inhibits BK channels with high affinity. Two solvent-exposed regions of the outer pore that influence alpha-KTx binding, the turret and loop, display high sequence variability among different potassium channels and may contribute to differences in alpha-KTx specificity. While these alpha-KTx domains have been studied in KV1 channels, little is known about the corresponding BK alpha-KTx domains. To define alpha-KTx sites in the BK outer pore, we examined the effect of 19 outer pore mutations on specific binding of 125I-labeled iberiotoxion (IbTX or alpha-KTx 1.3) and on their cell-surface expression. Similar to alpha-KTx sites in the Shaker KV1 loop, site-directed mutations in the BK loop disrupted specific IbTX binding. In contrast, mutations in the BK turret region revealed three novel alpha-KTx sites, Q267, N268, and L272, which are distinct from alpha-KTx sites in the KV1 turret. The BK turret region shows no sequence identity with KV1 and MthK turrets of known 3D structure. To define the BK turret, we used secondary structure prediction methods that incorporated information from sequence alignment of 30 different Slo1 and Slo3 turret sequences from 5 of the 7 major animal phyla representing 27 different species. Results of this analysis suggest that the BK turret contains 18 amino acids and is defined by a cluster of strictly conserved polar residues at the N-terminal side of the turret. Thus, the BK turret is predicted to have six more amino acids than the KV1 turret. Results of this work suggest that BK and KV1 outer pores have a similar alpha-KTx domain in the loop preceding the inner helix, but that the BK turret comprises a unique alpha-KTx interaction surface that likely contributes to the exclusive selectivity of BK channels for alpha-KTx1.x toxins.  相似文献   

9.
Reconstitution of large conductance calcium-activated potassium (KCa) channels from native cell membranes into planar lipid bilayers provides a powerful method to study single channel properties, including ion conduction, pharmacology, and gating. Recently, KCa channels derived from the Drosophila Slowpoke (Slo) gene have been cloned and heterologously expressed in Xenopus oocytes. In this report, we describe the reconstitution of cloned and expressed Slo KCa channels from Xenopus oocyte membranes into lipid bilayers. The reconstituted channels demonstrate functional properties characteristic of native KCa channels. They possess a mean unitary conductance of approximately 260 pS in symmetrical potassium (250 mM), and they are voltage- and calcium-sensitive. At 50 microM Ca2+, their half-activation potential was near -20 mV; and their affinity for calcium is in the micromolar range. Reconstituted Slo KCa channels were insensitive to external charybdotoxin (40-500 nM) and sensitive to micromolar concentrations of external tetraethylammonium (KD = 158 microM, at 0 mV) and internal Ba2+ (KD = 76 microM, at 40 mV). In addition, they were blocked by internally applied "ball" inactivating peptide (KD = 480 microM, at 40 mV). These results demonstrate that cloned KCa channels expressed in Xenopus oocytes can be readily incorporated into lipid bilayers where detailed mechanistic studies can be performed under controlled internal and external experimental conditions.  相似文献   

10.
Slo2 channels are a type of sodium-activated K+ channels and possess a typical PDZ binding motif at the carboxy-terminal end. Thus, we investigated whether Slo2 channels bind to PSD-95, because it is well known that other types of K+ channels, voltage-gated and inward rectifier K+ channels, bind to PSD-95 via the PDZ binding motif and are involved in excitatory synaptic transmission. By using an extract prepared from cultured neocortical neurons, we demonstrated a biochemical interaction between mSlo2 channels and PSD-95, and a mutational analysis revealed that mSlo2 channels bound to the first PDZ domain of PSD-95 via the PDZ binding motif. To investigate the expression of mSlo2 protein in primary neocortical neurons, we raised anti-mSlo2 channel antibody and immunostained neocortical neurons. The immunocytochemical study showed that mSlo2 channels partly colocalized with PSD-95 in mouse neocortical neurons.  相似文献   

11.
The phosphorylation state of large-conductance calcium-activated potassium (BKCa) channels regulates their activity and is dynamically regulated by protein phosphatases and kinases, including protein kinase C (PKC). In this study, we showed that PKC activators up-regulate the activity of the BKCa channel alpha (α)-subunit, Slo1, in cell-attached patches of transfected COS7 cells. In an immune complex kinase assay, BKCa channels isolated from rat brain were phosphorylated in the presence of PKC activators, without the addition of exogenous PKC, which suggests that PKC and BKCa channels functionally interact in vivo. Four different PKC isozymes, including PKCδ, phosphorylated the C-terminus of Slo1 and the addition of purified PKCδ-activated BKCa channels in excised patches of transfected HEK293 cells. Our results demonstrate that PKC up-regulates BKCa channels and that PKCδ may functionally interact with BKCa channel complexes in vivo.  相似文献   

12.
Ma D  Nakata T  Zhang G  Hoshi T  Li M  Shikano S 《FEBS letters》2007,581(5):1000-1008
The pore-forming subunit of the large-conductance Ca(2+)-dependent K(+) (Slo1) channel is encoded by one gene. However, the functional properties of Slo1 channels are diverse in part because of their numerous regulatory mechanisms including posttranslational modification and alternative splicing. In particular, multiple splice variants of the pore-forming subunit have been reported but their significance is only beginning to be elucidated. Here we examined the cell biological properties of the three common C-terminal isoforms that differ in the last 8 (Slo1_ERL and Slo1_VYR) or 61 residues (Slo1_DEC). We found that Slo1_DEC, the longest isoform, shows dramatically reduced surface expression compared to that of Slo1_ERL or Slo1_VYR. Immunocytochemistry revealed that a large fraction of Slo1_DEC remains localized in endoplasmic reticulum (ER). Using a GST fusion protein containing the Slo1_DEC-specific sequence, affinity purification was carried out to isolate interacting proteins. The identified proteins include protein phosphatase 2A (PP2A-A), actin, and tubulin. The PP2A-A interaction is specific to Slo1_DEC and causes a significant reduction of phosphorylation in Slo1_DEC but not Slo1_ERL or Slo1_VYR. The results together support the notion that Slo1_DEC nucleates isoform-specific protein complexes and possesses a cis element(s) for regulating trafficking of the Slo1 channels.  相似文献   

13.
14.
Phosphatidylinositol 4,5-bisphosphate (PIP2) plays a critical role in modulating the function of numerous ion channels, including large-conductance Ca2+- and voltage-dependent K+ (BK, Slo1) channels. Slo1 BK channel complexes include four pore-forming Slo1 (α) subunits as well as various regulatory auxiliary subunits (β and γ) that are expressed in different tissues. We examined the molecular and biophysical mechanisms underlying the effects of brain-derived PIP2 on human Slo1 BK channel complexes with different subunit compositions that were heterologously expressed in human embryonic kidney cells. PIP2 inhibited macroscopic currents through Slo1 channels without auxiliary subunits and through Slo1 + γ1 complexes. In contrast, PIP2 markedly increased macroscopic currents through Slo1 + β1 and Slo1 + β4 channel complexes and failed to alter macroscopic currents through Slo1 + β2 and Slo1 + β2 Δ2–19 channel complexes. Results obtained at various membrane potentials and divalent cation concentrations suggest that PIP2 promotes opening of the ion conduction gate in all channel types, regardless of the specific subunit composition. However, in the absence of β subunits positioned near the voltage-sensor domains (VSDs), as in Slo1 and probably Slo1 + γ1, PIP2 augments the negative surface charge on the cytoplasmic side of the membrane, thereby shifting the voltage dependence of VSD-mediated activation in the positive direction. When β1 or β4 subunits occupy the space surrounding the VSDs, only the stimulatory effect of PIP2 is evident. The subunit compositions of native Slo1 BK channels differ in various cell types; thus, PIP2 may exert distinct tissue- and divalent cation–dependent modulatory influences.  相似文献   

15.
Oxidative stress may alter the functions of many proteins including the Slo1 large conductance calcium-activated potassium channel (BKCa). Previous results demonstrated that in the virtual absence of Ca2+, the oxidant chloramine-T (Ch-T), without the involvement of cysteine oxidation, increases the open probability and slows the deactivation of BKCa channels formed by human Slo1 (hSlo1) alpha subunits alone. Because native BKCa channel complexes may include the auxiliary subunit beta1, we investigated whether beta1 influences the oxidative regulation of hSlo1. Oxidation by Ch-T with beta1 present shifted the half-activation voltage much further in the hyperpolarizing direction (-75 mV) as compared with that with alpha alone (-30 mV). This shift was eliminated in the presence of high [Ca2+]i, but the increase in open probability in the virtual absence of Ca2+ remained significant at physiologically relevant voltages. Furthermore, the slowing of channel deactivation after oxidation was even more dramatic in the presence of beta1. Oxidation of cysteine and methionine residues within beta1 was not involved in these potentiated effects because expression of mutant beta1 subunits lacking cysteine or methionine residues produced results similar to those with wild-type beta1. Unlike the results with alpha alone, oxidation by Ch-T caused a significant acceleration of channel activation only when beta1 was present. The beta1 M177 mutation disrupted normal channel activation and prevented the Ch-T-induced acceleration of activation. Overall, the functional effects of oxidation of the hSlo1 pore-forming alpha subunit are greatly amplified by the presence of beta1, which leads to the additional increase in channel open probability and the slowing of deactivation. Furthermore, M177 within beta1 is a critical structural determinant of channel activation and oxidative sensitivity. Together, the oxidized BKCa channel complex with beta1 has a considerable chance of being open within the physiological voltage range even at low [Ca2+]i.  相似文献   

16.
17.
18.
Functional large-conductance Ca(2+)- and voltage-activated K(+) (BK) channels can be assembled from four alpha subunits (Slo1) alone, or together with four auxiliary beta1 subunits to greatly increase the apparent Ca(2+) sensitivity of the channel. We examined the structural features involved in this modulation with two types of experiments. In the first, the tail domain of the alpha subunit, which includes the RCK2 (regulator of K(+) conductance) domain and Ca(2+) bowl, was replaced with the tail domain of Slo3, a BK-related channel that lacks both a Ca(2+) bowl and high affinity Ca(2+) sensitivity. In the second, the Ca(2+) bowl was disrupted by mutations that greatly reduce the apparent Ca(2+) sensitivity. We found that the beta1 subunit increased the apparent Ca(2+) sensitivity of Slo1 channels, independently of whether the alpha subunits were expressed as separate cores (S0-S8) and tails (S9-S10) or full length, and this increase was still observed after the Ca(2+) bowl was mutated. In contrast, beta1 subunits no longer increased Ca(2+) sensitivity when Slo1 tails were replaced by Slo3 tails. The beta1 subunits were still functionally coupled to channels with Slo3 tails, as DHS-I and 17 beta-estradiol activated these channels in the presence of beta1 subunits, but not in their absence. These findings indicate that the increase in apparent Ca(2+) sensitivity induced by the beta1 subunit does not require either the Ca(2+) bowl or the linker between the RCK1 and RCK2 domains, and that Slo3 tails cannot substitute for Slo1 tails. The beta1 subunit also induced a decrease in voltage sensitivity that occurred with either Slo1 or Slo3 tails. In contrast, the beta1 subunit-induced increase in apparent Ca(2+) sensitivity required Slo1 tails. This suggests that the allosteric activation pathways for these two types of actions of the beta1 subunit may be different.  相似文献   

19.
Large conductance (BK) calcium activated potassium channels (Slo) are ubiquitous and implicated in a number of human diseases including hypertension and epilepsy. BK channels consist of a pore forming α-subunit (Slo) and a number of accessory subunits. In hair cells of nonmammalian vertebrates these channels play a critical role in electrical resonance, a mechanism of frequency selectivity. Hair cell BK channel clusters on the surface and currents increase along the tonotopic axis and contribute significantly to the responsiveness of these hair cells to sounds of high frequency. In contrast, messenger RNA levels encoding the Slo gene show an opposite decrease in high frequency hair cells. To understand the molecular events underlying this paradox, we used a yeast two-hybrid screen to isolate binding partners of Slo. We identified Rack1 as a Slo binding partner and demonstrate that PKC activation increases Slo surface expression. We also establish that increased Slo recycling of endocytosed Slo is at least partially responsible for the increased surface expression of Slo. Moreover, analysis of several PKC phosphorylation site mutants confirms that the effects of PKC on Slo surface expression are likely indirect. Finally, we show that Slo clusters on the surface of hair cells are also increased by increased PKC activity and may contribute to the increasing amounts of channel clusters on the surface of high-frequency hair cells.  相似文献   

20.
Subthreshold-activating somatodendritic A-type potassium channels have fundamental roles in neuronal signaling and plasticity which depend on their unique cellular localization, voltage dependence, and kinetic properties. Some of the components of A-type K(+) channels have been identified; however, these do not reproduce the properties of the native channels, indicating that key molecular factors have yet to be unveiled. We purified A-type K(+) channel complexes from rat brain membranes and found that DPPX, a protein of unknown function that is structurally related to the dipeptidyl aminopeptidase and cell adhesion protein CD26, is a novel component of A-type K(+) channels. DPPX associates with the channels' pore-forming subunits, facilitates their trafficking and membrane targeting, reconstitutes the properties of the native channels in heterologous expression systems, and is coexpressed with the pore-forming subunits in the somatodendritic compartment of CNS neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号