首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Two new anthraquinone glycosides Strepnoneside A (1) and Strepnoneside B (2), together with Chromomycin A3 (3), were isolated from cultures of the marine Streptomyces sp. strain. The structures were elucidated on the basis of NMR spectroscopic and mass spectrometry data. Compound 3 exhibited cytotoxic activities against HCT 116 cell lines (IC50 = 300 ± 11 pM).  相似文献   

3.
Two new diketopiperazines, cyclo(l-Phe-l-NMe-DOPA) (2) and cyclo[l-Phe-l-(NMe-3-(NMe-3-O-α-l-rhamnopyranosyl)-DOPA] (3), along with a known diketopiperazine (1), were isolated from the cultures of Streptomyces sp. SC0581. Their structures were elucidated by extensive spectroscopic analysis, single-crystal X-ray crystallographic analysis, and chemical correlation. Compounds 1  3 exhibited more potent ABTS radical cation scavenging activity (IC50 values: 3.7  14.6 μM) than l-ascorbic acid (IC50: 17.7 μM). Compounds 2 and 3 also showed remarkable DPPH radical scavenging activity.  相似文献   

4.
Three new compounds, butyl homononactate (5), butyl nonactate (6), 8-actyl homononactic acid (7), along with four known compounds homononactic acids (1), nonactic acid (2), homononactyl nonactate (3), homononactyl homononactate (4) were isolated from the marine Streptomyces griseus RSH0407, derived from the plant Salicornia sp., Chenopodiaceae. Their structures were elucidated by extensive spectroscopic techniques and by comparison with data reported in the literature. The absolute configuration of 3 was first reported by using X-ray copper radiation. Compound 5 exhibited cytotoxic activities against the HCT-8, A2780, BGC-823, BEL-7402, and A549 cell lines in vitro, with IC50 values of 2.87 ± 0.20, 4.90 ± 0.30, 2.19 ± 0.32, 5.07 ± 0.23 and 1.78 ± 0.18 μM, respectively, and compounds 47 showed weak antibacterial activities against four bacterials respectively.  相似文献   

5.
《Process Biochemistry》2014,49(10):1637-1646
One-pot conversion with whole cells of bacteria was performed for biooxidation of meso monocyclic (3a–b) and bicyclic diols (3c–e) into corresponding chiral lactones of bicyclo[4.3.0]nonane structure (2a–b) as well as exo- and endo-bridged lactones with the structure of [2.2.1] (3c–d) and [2.2.2] (3e). Micrococcus sp. DSM 30771 was selected as biocatalyst with significant alcohol dehydrogenase activity. Among tested strains, microbial oxidation of meso diols 3a–e catalyzed by Micrococcus sp. afforded enantiomerically pure ((+)-(2S,3R)-2c (ee = 99%), (+)-(2S,3R)-2e (ee = 99%)) or enriched ((+)-(1S,5R)-2a (ee = 90%), (−)-(1S,5R)-2b (ee = 86%), (+)-(2S,3R)-2d (ee = 80%)) lactone moieties. Comparative study with respect to microbial cultivation as well as biooxidation was undertaken to verify agreement of secondary metabolite biosynthesis in different scales: from MTP (4 mL), across shake flask (100 mL) till bioreactor (4 L). The results from biotransformations showed quite similar dependence in oxidation of all substrates 3a–e in MTP and flasks as well, thereby confirmed the validity and reasonable approach of using MTP for preliminary studies.  相似文献   

6.
We recently showed that oxadiazoles have anti-Trypanosoma cruzi activity at micromolar concentrations. These compounds are easy to synthesize and show a number of clear and interpretable structure–activity relationships (SAR), features that make them attractive to pursue potency enhancement. We present here the structural design, synthesis, and anti-T. cruzi evaluation of new oxadiazoles denoted 5ah and 6ah. The design of these compounds was based on a previous model of computational docking of oxadiazoles on the T. cruzi protease cruzain. We tested the ability of these compounds to inhibit catalytic activity of cruzain, but we found no correlation between the enzyme inhibition and the antiparasitic activity of the compounds. However, we found reliable SAR data when we tested these compounds against the whole parasite. While none of these oxadiazoles showed toxicity for mammalian cells, oxadiazoles 6c (fluorine), 6d (chlorine), and 6e (bromine) reduced epimastigote proliferation and were cidal for trypomastigotes of T. cruzi Y strain. Oxadiazoles 6c and 6d have IC50 of 9.5 ± 2.8 and 3.5 ± 1.8 μM for trypomastigotes, while Benznidazole, which is the currently used drug for Chagas disease treatment, showed an IC50 of 11.3 ± 2.8 μM. Compounds 6c and 6d impair trypomastigote development and invasion in macrophages, and also induce ultrastructural alterations in trypomastigotes. Finally, compound 6d given orally at 50 mg/kg substantially reduces the parasitemia in T. cruzi-infected BALB/c mice. Our drug design resulted in potency enhancement of oxadiazoles as anti-Chagas disease agents, and culminated with the identification of oxadiazole 6d, a trypanosomicidal compound in an animal model of infection.  相似文献   

7.
Trichoderma is an important biocontrol agent that produces metabolites harmful to nematodes. We investigated the volatile organic compounds (VOCs) of Trichoderma sp. YMF 1.00416 and examined their abilities to kill nematodes. Chemical investigations of the VOCs from this strain led to the isolation and identification of three metabolites: a new compound, 1β-vinylcyclopentane-1α,3α-diol (1) and two known metabolites, 6-pentyl-2H-pyran-2-one (2) and 4-(2-hydroxyethyl)phenol (3). Nematicidal activity assays showed that compound 2 was nematicidal, and killed > 85% of Panagrellus redivivus, Caenorhabditis elegans, and Bursaphelenchus xylophilus in 48 h at 200 mg/L in a 2 mL vial. Our results will help identify new nematicides.  相似文献   

8.
9.
《Inorganica chimica acta》2006,359(9):2798-2805
X-ray structural and NMR spectroscopic data for the ring-opened thiophene complexes [Pd(dippe)(T)] (2), and [Pt(dippe)(T)] (3) are now presented. The complex [Ni(dippe)(T)] (1), where T = 2-C,S-C4H4S), was reported by our group, previously.The structural and bonding properties of complexes 2 and 3 were compared with those of complex 1. DFT calculations were carried out to rationalize their relative stabilities and structural properties. Compound 1 loses thiophene at ambient temperature in solution, while compound 2 decomposes rapidly in both acetone-d6 and THF-d8 with kobs = 7.15(9) × 10−5 and 7.7(3) × 10−5 s−1, respectively, to give products that varied by solvent. Complex 3 does not lose thiophene at temperatures below 100 °C. The ΔG0 values determined from DFT calculations are consistent with the observed stabilities of the complexes. The single crystal X-ray structures of all three complexes contain a disordered thienyl fragment in the asymmetric unit due to the interchange of the position of sulfur in the metal-inserted thiophenic ring. The thiophenic moiety is relatively flat in 1, 2 and 3, which is attributed to the open ligand environment at the M(dippe) fragment. All three complexes possess square-planar geometry around the metal center and have bond-length alternation among the thiophenic carbons, which indicates double bond localization. The calculated bond lengths are in good agreement with experimental data. Molecular orbital (MO) and natural bonding orbital (NBO) analyses were carried out to rationalize the results.  相似文献   

10.
Two new xanthones identified as 15-chlorotajixanthone hydrate (1) and 14-methoxytajixanthone (2) were isolated from an Emericella sp. strain 25379 along with shamixanthone (3) and tajixanthone hydrate (4). The stereostructures of 1 and 2 were elucidated by spectroscopic and molecular modeling methods. The absolute configuration at the stereogenic centers of 1 was established according to CD measurements. In the case of 2, however, the absolute configuration at C-20 and C-25 was designated as S and R, respectively, by Mosher ester methodology. Thereafter, the configuration at C-14 and C-15 of 2 was established as S and S, respectively by comparing the optical rotation and 1H–1H coupling constant experimental values with those obtained through molecular modeling calculations at DFT B3LYP/DGDZVP level of theory for diasteroisomers 2a2d. The activation of the calmodulin-sensitive cAMP phosphodiesterase (PDE1) was inhibited in the presence of 14 in a concentration-dependent manner. The effect of compounds 2 (IC50 = 5.54 μM) and 4 (IC50 = 5.62 μM) was comparable with that of chlorpromazine (CPZ; IC50 = 7.26 μM), a well known CaM inhibitor used as a positive control. The inhibition mechanism of both compounds was competitive with respect to CaM according to a kinetic study. A docking analysis with 2 and 4 using the AutoDock 4.0 program revealed that they interacted with CaM in the same pocket as trifluoropiperazine (TFP).  相似文献   

11.
Peniopyranone (1) and 2-methoxyl-β-l-Arabinofuroside uracil (2), together with six known compounds were isolated from the broth of Penicillium sp. (NO. 64). And their structures were established by comprehensive analysis of NMR, MS and CD spectra, the absolute configurations of Peniopyranone (1) were determined as 7S, 8S and 9R by calculating its ECD. The eight obtained metabolites were subjected to evaluate the preliminary cytotoxic activities to four cancer cell lines, but they showed no significant data with IC50 > 50 μmol/mL. The results of acetylcholinesterase inhibiting assay showed that peniopyranone (1) displayed the inhibition activity to acetylcholinesterase with IC50 at 15.2 μmol/mL.  相似文献   

12.
Species of the family Combretaceae are used extensively in traditional medicine against inflammation and infections, and although antibacterial activity has been reported in non-polar extracts, further rationale for the widespread use of the Combretaceae is expected to exist. Methanol extracts of leaves of ten different Combretum species were evaluated for antioxidant activity by spraying TLC chromatograms of each leaf extract with 2,2-diphenyl-1-picrylhydrazyl (DPPH). Compounds with antioxidant activity were detected by bleaching of the purple DPPH colour. Leaf extracts of Combretum apiculatum subsp. apiculatum had the most antioxidant compounds. This species was consequently selected for phytochemical investigation. A DPPH assay-directed fractionation of the leaf extracts of C. apiculatum led to the isolation of four antioxidant compounds from the ethyl acetate and butanol soluble fractions. The structures of the compounds were determined by spectroscopic analyses (1H-NMR, 13C-NMR and MS) and identified as: cardamonin (1), pinocembrin (2), quercetrin (3) and kaempferol (4). In a quantitative antioxidant assay, the more polar fractions (ethyl acetate and butanol) obtained by solvent–solvent fractionation had the highest antioxidant activity among the solvent fractions obtained from C. apiculatum, with EC50 values of 3.91 ± 0.02 and 2.44 ± 0.02 μg/ml respectively. Of the four isolated compounds, quercetrin (4) and kaempferol (3) had the strongest antioxidant activity, with EC50 values of 11.81 ± 85 and 47.36 ± 0.03 μM respectively. Cardamonin (1) and pinocembrin (2) did not demonstrate strong activity. L-ascorbic acid was used as standard antioxidant agent (EC50 = 13.37 ± 0.20 μM or 2.35 μg/ml). The cytotoxicity of cardamonin and pinocembrin was evaluated on Vero kidney cells using the MTT (3-(4,5-dimethylthiazol)-2,5-diphenyl tetrazolium bromide) assay with berberine as positive control. At concentrations higher than 50 μg/ml of cardamonin or pinocembrin, the cells were not viable. Cardamonin was more toxic (LC50 = 1.97 μg/ml) than pinocembrin (LC50 = 29.47 μg/ml) and even the positive control, berberine (LC50 = 12.35 μg/ml).  相似文献   

13.
During the course of our studies on a novel HER2/EGFR dual inhibitor (TAK-285), we found an alternative potent pyrrolo[3,2-d]pyrimidine compound (1a). To enhance the pharmacokinetic (PK) profile of this compound, we conducted chemical modifications into its N-5 side chain and conversion of the chemically modified compounds into their salts. Among them, 2cb, the tosylate salt of compound 2c, showed potent HER2/EGFR kinase inhibitory activity (IC50: 11/11 nM) and cellular growth inhibitory activity (BT-474 cell GI50: 56 nM) with a good drug metabolism and PK (DMPK) profile. Furthermore, 2cb exhibited significant in vivo antitumor efficacy in both mouse and rat xenograft models with transplanted 4-1ST gastric cancer cell lines (mouse, T/C = 0%, 2cb po bid at 100 mg/kg; rat, T/C: -1%, 2cb po bid at 25 mg/kg).  相似文献   

14.
A new triterpeniod saponin 3-O-β-arabinopyranosyl-(1  3)-[β-galactopyranosyl-(1  2)]-β-glucuronopyranosyl gypsogenin (1), together with the known saponin 3-O-β-xylopyranosyl-(1  3)-[β-galactopyranosyl-(1  2)]-β-glucuronopyranosyl gypsogenin (2), and three known triterpenes gypsogenic acid (3), quillaic acid (4) and gypsogenin (5) were isolated from the roots of Gypsophila trichotoma Wend. (Caryophyllaceae). Their structures were elucidated by chemical and spectral methods. Cytotoxic activity of compounds 1 and 2 were tested against seven human cancer cell lines. Compound 1 showed cytotoxic activity against all of them, while compound 2 only against two cell lines.  相似文献   

15.
A flavonoid glycoside, kaempferol 3-O-β-d-glucopyranosyl (1  2)-O-β-d-glucopyranosyl (1  2)-O-[α-l-rhamnopyranosyl-(1  6)]-β-d-glucopyranoside (1), along with two known C- and O-flavonoid glycosides (2 and 3, respectively), were isolated from carnation (Dianthus caryophyllus). The structures of the isolated compounds have been elucidated unambiguously by UV, MS, and a series of 1D and 2D NMR analyses. The isolated compounds and other flavonoid glycoside analogues exhibited antifungal activity against different Fusarium oxysporum f.sp. dianthi pathotypes.  相似文献   

16.
Two new (1–2) and one known (3) benzophenone derivatives, along with five known ambuic acid analogues (4–8) were isolated from the solid cultures of a Pestalotiopsis sp. Compound 2 represented both enantiomeric and atropisomeric isomers, and the absolute configurations of enantiomers [(−)-2 and (+)-2] were determined by electronic circular dichroism (ECD) calculations. All the isolates were evaluated for their antimicrobial and cytotoxic activities. Chlorinated compounds 2 and 3 showed potent antimicrobial activities against four pathogenic bacteria, and compound 3 also displayed strong antifungal activity against Candida glabrata (ATCC 90030) with an MIC50 value of 2.6 ± 0.1 μg/mL. Compound 1 exhibited moderate cytotoxicity against U2OS and MCF-7 with IC50 values of 11.6 and 16.8 μM, respectively.  相似文献   

17.
Biodegradation of long chain n-alkanes and crude oil with fast rate and high concentration are desirable for bioremediation, especially in heavily oil-polluted areas, and enhanced oil recovery. We discovered Rhodococcus sp. Moj-3449 with such unique abilities by screening microorganisms for the growth on n-hexadecane at 30 mg/mL. The new strain grew very fast on 120 mg/mL of n-hexadecane giving a cell density of 14.7 g cdw/L after only 2 days’ incubation. During the growth with this strain, the oil–water phases were rapidly emulsified, giving rise to tolerance to high alkane concentration (250 mg/mL) and fast growth rate of 0.10–0.20 h?1 for alkane concentration of 1–180 mg/mL. The degraded concentration of n-hexadecane increased linearly with the initial alkane concentration (1–250 mg/mL). Incubation on n-hexadecane at 250 mg/mL for 7 days gave a cell density of 13.5 g cdw/L and degraded 124 mg/mL of n-hexadecane. The strain grew also fast on n-dodecane (C12), n-tetradecane (C14), and n-octadecane (C18), with degradation preference of C14 (=C16) > C12 > C18. Different from many alkane-degrading strains, Rhodococcus sp. Moj-3449 was found to have subterminal oxidation pathway. Rhodococcus sp. Moj-3449 degraded also crude oil fast at 60–250 mg/mL, with a wide range of n-alkanes (C10–C35) as substrates in which C14–C19 are preferred. The degradation ability increased with initial oil concentration from 60 to 150 mg/mL and slightly decreased afterwards. Incubation on 150 mg/mL of crude oil for 7 days degraded 37% of n-alkanes. The outstanding ability of rapidly degrading long chain n-alkanes and crude oil at high concentration makes Rhodococcus sp. Moj-3449 potentially useful for bioremediation and microbial enhanced oil recovery.  相似文献   

18.
Six 1,3-diphenylpropanes exhibiting inhibitory activities against both the monophenolase and diphenolase actions of tyrosinase were isolated from the methanol (95%) extract of Broussonetia kazinoki. These compounds, 16, were identified as kazinol C (1), D (2), F (3), broussonin C (4), kazinol S (5) and kazinol T (6). The latter two species (5 and 6) emerged to be new 1,3-diphenylpropanes which we fully spectroscopically characterized. The IC50 values of compounds (1, 35) for monophenolase inhibition were determined to range between 0.43 and 17.9 μM. Compounds 1 and 35 also inhibited diphenolase significantly with IC50 values of 22.8, 1.7, 0.57, and 26.9 μM, respectively. All four active tyrosinase inhibitors (1, 35) were competitive inhibitors. Interestigly they all mainfested simple reversible slow-binding inhibition against diphenolase. The most potent inhibitor, compound 4 diplayed the following kinetic parameters k3 = 0.0993 μM?1 min?1, k4 = 0.0048 min-1, and Kiapp = 0.0485 μM.  相似文献   

19.
《Endocrine practice》2020,26(5):484-491
Objective: Patients with Graves disease (GD) tend to gain weight after treatment, but it remains unknown if weight gain is associated with an increase in the visceral and/or subcutaneous fat areas (VFA, SFA).Methods: We enrolled 25 newly diagnosed GD patients (22 females, median age 33.0 years) and studied their clinical parameters, and VFA and SFA measured by a dual bioelectric impedance analysis. We divided them into 2 groups based on the rates of change in the VFA and SFA, and we compared clinical parameters at the baseline between the groups to evaluate factors that influence increases in the VFA and/or SFA with treatment.Results: The patients' body weight (BW), VFA, and SFA were significantly increased after a 6-month treatment (BW: from 54.3 ± 10.3 kg to 58.0 ± 11.2 kg; P<.001; VFA: from 47.1 ± 21.3 cm2 to 54.7 ± 23.4 cm2; P = .004; SFA: from 159.8 ± 85.9 cm2 to 182.2 ± 82.9 cm2; P = .008). The percent changes of BW correlated with the SFA (ρ = .591, P = .002), but not with the VFA. The patients with larger VFA increases had significantly less VFA at the baseline compared to those with smaller increases, expressed as median and interquartile range (33.9 cm2 [22.7 to 47.5 cm2] versus 54.5 cm2 [45.2 to 64.0], respectively; P = .011). A larger increase in the SFA was negatively associated with serum alkaline phosphatase. An increase in the SFA was associated with free triiodothyronine (T3) in a multivariate logistic analysis (odds ratio: 0.80 [0.59 to 0.97]; P = .013).Conclusion: The patients' BW, VFA, and SFA were increased after GD treatment. The increase in SFA seemed to contribute to weight gain and was associated with a low baseline level of free T3.Abbreviations: ALP = alkaline phosphatase; BMI = body mass index; BW = body weight; GD = Graves disease; SFA = subcutaneous fat area; T3 = triiodothyronine; T4 = thyroxine; TG = triglycerides; VFA = visceral fat areas  相似文献   

20.
Three new phenylethanoid glycosides, 2-(3-hydroxy-4-methoxyphenyl)ethyl 1-O-β-d-allopyranoside (hodgsonialloside A, 1), 2-(3-hydroxy-4-methoxyphenyl)ethyl 1-O-β-d-glucopyranosyl-(1  4)-β-d-allopyranoside (hodgsonialloside B, 2) and 2-(3-methoxy-4-hydroxyphenyl)ethyl 1-O-β-d-allopyranoside (hodgsonialloside C, 3) were isolated from the leaves of Magnolia hodgsonii in addition to six known compounds, tyrosol 4-O-β-d-xylopyranosyl-(1  6)-β-d-glucopyranoside (4), kaempferol 3-O-neohesperidoside (5), kaempferol 3-O-rutinoside (6), kaempferol 3-O-α-l-rhamnopyranosyl-(1  2)-[α-l-rhamnopyranosyl-(1  6)]-β-d-glucopyranoside (7), (+)-syringaresinol O-β-d-glucopyranoside (8), and oblongionoside C (9). The structure elucidation of these compounds was based on analyses of physical and spectroscopic data including 1D and 2D NMR experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号