首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The conserved Ser/Thr kinase Atg1/ULK1 plays a crucial role in the regulation of autophagy. However, only very few Atg1 targets have been identified, impeding elucidation of the mechanisms by which Atg1 regulates autophagy. In our study, we determined the Saccharomyces cerevisiae Atg1 consensus phosphorylation sequence using a peptide array-based approach. Among proteins containing this sequence we identified Atg9, another essential component of the autophagic machinery. We showed that phosphorylation of Atg9 by Atg1 is required for phagophore elongation, shedding light on the mechanism by which Atg1 regulates early steps of autophagy.  相似文献   

2.
Autophagy is a bulk degradation system induced by cellular stresses such as nutrient starvation. Its function relies on the formation of double-membrane vesicles called autophagosomes. Unlike other organelles that appear to stably exist in the cell, autophagosomes are formed on demand, and once their formation is initiated, it proceeds surprisingly rapidly. How and where this dynamic autophagosome formation takes place has been a long-standing question, but the discovery of Atg proteins in the 1990''s significantly accelerated our understanding of autophagosome biogenesis. In this review, we will briefly introduce each Atg functional unit in relation to autophagosome biogenesis, and then discuss the origin of the autophagosomal membrane with an introduction to selected recent studies addressing this problem.  相似文献   

3.
Tang HW  Wang YB  Wang SL  Wu MH  Lin SY  Chen GC 《The EMBO journal》2011,30(4):636-651
Autophagy is a membrane-mediated degradation process of macromolecule recycling. Although the formation of double-membrane degradation vesicles (autophagosomes) is known to have a central role in autophagy, the mechanism underlying this process remains elusive. The serine/threonine kinase Atg1 has a key role in the induction of autophagy. In this study, we show that overexpression of Drosophila Atg1 promotes the phosphorylation-dependent activation of the actin-associated motor protein myosin II. A novel myosin light chain kinase (MLCK)-like protein, Spaghetti-squash activator (Sqa), was identified as a link between Atg1 and actomyosin activation. Sqa interacts with Atg1 through its kinase domain and is a substrate of Atg1. Significantly, myosin II inhibition or depletion of Sqa compromised the formation of autophagosomes under starvation conditions. In mammalian cells, we found that the Sqa mammalian homologue zipper-interacting protein kinase (ZIPK) and myosin II had a critical role in the regulation of starvation-induced autophagy and mammalian Atg9 (mAtg9) trafficking when cells were deprived of nutrients. Our findings provide evidence of a link between Atg1 and the control of Atg9-mediated autophagosome formation through the myosin II motor protein.  相似文献   

4.
Taki Nishimura 《Autophagy》2017,13(10):1795-1796
In our recent paper, we biochemically analyzed autophagosome-related membranes at the initiation stage of macroautophagy/autophagy using atg knockout (KO) cells and demonstrated that the ULK complex is recruited to 2 distinct membranes: the ER membrane and ATG9A-positive autophagosome precursors. We have also identified phosphatidylinositol synthase (PIS)-enriched ER subdomains as the initiation site of autophagosome formation. Based on these findings, we propose that the ULK complex, the PIS-enriched ER subdomain, and ATG9A vesicles together initiate autophagosome formation.  相似文献   

5.
《Autophagy》2013,9(2):249-251
The notion that phosphorylation constitutes a major mechanism to induce autophagy was established 15 years ago when a conserved Atg1/ULK kinase family was identified as an essential component of the autophagy machinery. The key observation was that starved atg1Δ cells lack autophagosomes in the cytosol and fail to accumulate autophagic bodies in the vacuole. Although many studies have revealed important details of Atg1 activation and function, a cohesive model for how Atg1 regulates the autophagic machinery is lacking. Our recent findings identified conserved steps of temporal and spatial regulation of Atg1/ULK1 kinase at both the PAS and autophagosomal membranes, suggesting that Atg1 not only promotes autophagy induction, but may also facilitate late stages of autophagosome biogenesis.  相似文献   

6.
《Autophagy》2013,9(11):1682-1683
Autophagosome formation is a complex cellular process, which requires major membrane rearrangements leading to the creation of a relatively large double-membrane vesicle that directs its contents to the lysosome for degradation. Although various membrane compartments have been identified as sources for autophagosomal membranes, the molecular mechanism underlying these membrane trafficking steps remains elusive. To address this question we performed a systematic analysis testing all known Tre-2/Bub2/Cdc16 (TBC) domain-containing proteins for their ability to inhibit autophagosome formation by disrupting a specific membrane trafficking step. TBC proteins are thought to act as inhibitors of Rab GTPases, which regulate membrane trafficking events. Up to 11 TBC proteins inhibit autophagy when overexpressed and one of these, TBC1D14, acts at an early stage during autophagosome formation and is involved in regulating recycling endosomal traffic. We found that the early acting autophagy proteins ATG9 and ULK1 localize to transferrin receptor (TFR)-positive recycling endosomes (RE), which are tubulated by excess TBC1D14 leading to an inhibition of autophagosome formation. Finally, transferrin (TF)-containing recycling endosomal membranes can be incorporated into newly forming autophagosomes, although it is likely that most of the autophagosome membrane is subsequently acquired from other sources.  相似文献   

7.
Autophagosome formation is a dynamic process that is strictly controlled by autophagy‐related (Atg) proteins. However, how these Atg proteins are recruited to the autophagosome formation site or autophagic membranes remains poorly understood. Here, we found that FIP200, which is involved in proximal events, directly interacts with Atg16L1, one of the downstream Atg factors, in an Atg14‐ and phosphatidylinositol 3‐kinase‐independent manner. Atg16L1 deletion mutants, which lack the FIP200‐interacting domain, are defective in proper membrane targeting. Thus, FIP200 regulates not only early events but also late events of autophagosome formation through direct interaction with Atg16L1.  相似文献   

8.
Autophagosome formation is a complex cellular process, which requires major membrane rearrangements leading to the creation of a relatively large double-membrane vesicle that directs its contents to the lysosome for degradation. Although various membrane compartments have been identified as sources for autophagosomal membranes, the molecular mechanism underlying these membrane trafficking steps remains elusive. To address this question we performed a systematic analysis testing all known Tre-2/Bub2/Cdc16 (TBC) domain-containing proteins for their ability to inhibit autophagosome formation by disrupting a specific membrane trafficking step. TBC proteins are thought to act as inhibitors of Rab GTPases, which regulate membrane trafficking events. Up to 11 TBC proteins inhibit autophagy when overexpressed and one of these, TBC1D14, acts at an early stage during autophagosome formation and is involved in regulating recycling endosomal traffic. We found that the early acting autophagy proteins ATG9 and ULK1 localize to transferrin receptor (TFR)-positive recycling endosomes (RE), which are tubulated by excess TBC1D14 leading to an inhibition of autophagosome formation. Finally, transferrin (TF)-containing recycling endosomal membranes can be incorporated into newly forming autophagosomes, although it is likely that most of the autophagosome membrane is subsequently acquired from other sources.  相似文献   

9.
Autophagy is an intracellular trafficking pathway sequestering cytoplasm and delivering excess and damaged cargo to the vacuole for degradation. The Atg1/ULK1 kinase is an essential component of the core autophagy machinery possibly activated by binding to Atg13 upon starvation. Indeed, we found that Atg13 directly binds Atg1, and specific Atg13 mutations abolishing this interaction interfere with Atg1 function in vivo. Surprisingly, Atg13 binding to Atg1 is constitutive and not altered by nutrient conditions or treatment with the Target of rapamycin complex 1 (TORC1)-inhibitor rapamycin. We identify Atg8 as a novel regulator of Atg1/ULK1, which directly binds Atg1/ULK1 in a LC3-interaction region (LIR)-dependent manner. Molecular analysis revealed that Atg13 and Atg8 cooperate at different steps to regulate Atg1 function. Atg8 targets Atg1/ULK1 to autophagosomes, where it may promote autophagosome maturation and/or fusion with vacuoles/lysosomes. Moreover, Atg8 binding triggers vacuolar degradation of the Atg1-Atg13 complex in yeast, thereby coupling Atg1 activity to autophagic flux. Together, these findings define a conserved step in autophagy regulation in yeast and mammals and expand the known functions of LIR-dependent Atg8 targets to include spatial regulation of the Atg1/ULK1 kinase.  相似文献   

10.
Ying Song  Dantong Shang 《Autophagy》2018,14(4):727-729
Macroautophagy/autophagy is a catabolic process that is essential for cellular homeostasis. How autophagosomal vesicle forms in a spatio-temporally regulated manner remains elusive. Our recent study revealed that small GTPase, RAB37 (RAB37, member RAS oncogene family), functions as a key organizer of autophagosomal membrane biogenesis. RAB37 interacts with ATG5 (autophagy related 5) and promotes autophagosome formation by modulating ATG12–ATG5-ATG16L1 complex assembly. These findings provide new insights into autophagy regulation.  相似文献   

11.
Autophagosomes are formed by double-membraned structures, which engulf portions of cytoplasm. Autophagosomes ultimately fuse with lysosomes, where their contents are degraded. The origin of the autophagosome membrane may involve different sources, such as mitochondria, Golgi, endoplasmic reticulum, plasma membrane, and recycling endosomes. We recently observed that ATG9 localizes on the plasma membrane in clathrin-coated structures and is internalized following a classical endocytic pathway through early and then recycling endosomes. By contrast, ATG16L1 is also internalized by clathrin-mediated endocytosis but via different clathrin-coated pits, and appears to follow a different route to the recycling endosomes. The R-SNARE VAMP3 mediates the coalescence of the 2 different pools of vesicles (containing ATG16L1 or ATG9) in recycling endosomes. The heterotypic fusion between ATG16L1- and ATG9-containing vesicles strongly correlates with subsequent autophagosome formation. Thus, ATG9 and ATG16L1 both traffic from the plasma membrane to autophagic precursor structures and provide 2 routes from the plasma membrane to autophagosomes.  相似文献   

12.
Macroautophagy delivers cytoplasmic material to lysosomal/vacuolar compartments for degradation. Conserved multisubunit complexes, composed of autophagy-related (Atg) proteins, initiate the formation of membrane precursors, termed phagophores. Under physiological conditions these cup-shaped structures can capture cytoplasmic material highly selectively. Starvation or cytotoxic stresses, however, initiate the formation of much larger phagophores to enclose cytoplasm nonselectively. The biogenesis of nonselective autophagosomes is initiated by the hierarchical assembly of the Atg1 kinase complex and the recruitment of Atg9 vesicles at the phagophore assembly site (PAS). In this punctum we summarize our recent findings regarding tethering of Atg9 vesicles by the Atg1 kinase complex. We discuss membrane tethering by and activation of its central subunit Atg17 in the context of other canonical membrane tethering factors. Our results show that Atg17 suffices to bind and tether Atg9 vesicles. The Atg31-Atg29 subcomplex inhibits Atg17 activity, and activation of Atg17 depends on the formation of the Atg1 kinase complex that involves recruiting Atg1-Atg13. Our studies lead to a model of unconventional membrane tethering in autophagy.  相似文献   

13.
14.
The proteins that comprise the Atg1 kinase complex constitute a key set of components that participate in macroautophagy (hereafter autophagy). Among these proteins, Atg13 plays a particularly important, although as yet undefined role, in that it is critical for the proper localization of Atg1 to the phagophore assembly site (PAS) and its efficient kinase activity. Atg13 is hyperphosphorylated in vegetative conditions when autophagy occurs at a basal level, and is largely dephosphorylated upon the induction of autophagy. Inhibitory phosphorylation of Atg13 reflects the activity of TOR complex 1 (TORC1) and protein kinase A. Accordingly, monitoring the phosphorylation state of Atg13 provides a convenient way to follow early steps of autophagy induction as well as the activity of some of the upstream nutrient-sensing kinases. However, the detection of Atg13 by western blot can be problematic. Here, we present a detailed protocol for sample preparation and detection of the Atg13 protein from yeast.  相似文献   

15.
《Autophagy》2013,9(3):514-517
The proteins that comprise the Atg1 kinase complex constitute a key set of components that participate in macroautophagy (hereafter autophagy). Among these proteins, Atg13 plays a particularly important, although as yet undefined role, in that it is critical for the proper localization of Atg1 to the phagophore assembly site (PAS) and its efficient kinase activity. Atg13 is hyperphosphorylated in vegetative conditions when autophagy occurs at a basal level, and is largely dephosphorylated upon the induction of autophagy. Inhibitory phosphorylation of Atg13 reflects the activity of TOR complex 1 (TORC1) and protein kinase A. Accordingly, monitoring the phosphorylation state of Atg13 provides a convenient way to follow early steps of autophagy induction as well as the activity of some of the upstream nutrient-sensing kinases. However, the detection of Atg13 by western blot can be problematic. Here, we present a detailed protocol for sample preparation and detection of the Atg13 protein from yeast.  相似文献   

16.
A new technology from Quanterix called SiMoA (single molecule array) which employs a fully automated system capable of ultrasensitive sandwich based ELISA detection was explored. Our studies focused upon the inhibition of the autophagy initiating kinase ULK1 by measuring the both total Atg13 and the phosphorylation of Atg13(pSer318) from control and following compound treatment in either overexpressing or wild type tissue culture samples. The results show linear protein concentration dependence over two orders of magnitude and provide an assay window of 8- to 100-fold signal to background for inhibition of phosphorylation for both wild type and overexpressed samples, respectively. Moreover, overexpressed samples displayed 17-fold pSer318-Atg13 above wild type levels of with no apparent differences in compound potency. Lastly, the inhibition of ULK1 from mouse derived wild type xenografts also demonstrated loss of pSer318-Atg13 upon ULK1 inhibitor treatment that compared favorably to Western blot. These results show that the SiMoA technology can detect quantitatively low levels of endogenous biomarkers with the ability to detect the loss of pSer318-Atg13 upon ULK1 inhibition.  相似文献   

17.
Macroautophagy/autophagy is an evolutionarily conserved cellular process whose induction is regulated by the ULK1 protein kinase complex. The subunit ATG13 functions as an adaptor protein by recruiting ULK1, RB1CC1 and ATG101 to a core ULK1 complex. Furthermore, ATG13 directly binds both phospholipids and members of the Atg8 family. The central involvement of ATG13 in complex formation makes it an attractive target for autophagy regulation. Here, we analyzed known interactions of ATG13 with proteins and lipids for their potential modulation of ULK1 complex formation and autophagy induction. Targeting the ATG101-ATG13 interaction showed the strongest autophagy-inhibitory effect, whereas the inhibition of binding to ULK1 or RB1CC1 had only minor effects, emphasizing that mutations interfering with ULK1 complex assembly do not necessarily result in a blockade of autophagy. Furthermore, inhibition of ATG13 binding to phospholipids or Atg8 proteins had only mild effects on autophagy. Generally, the observed phenotypes were more severe when autophagy was induced by MTORC1/2 inhibition compared to amino acid starvation. Collectively, these data establish the interaction between ATG13 and ATG101 as a promising target in disease-settings where the inhibition of autophagy is desired.  相似文献   

18.
Autophagy describes an intracellular process responsible for the lysosome-dependent degradation of cytosolic components. The ULK1/2 complex comprising the kinase ULK1/2 and the accessory proteins ATG13, RB1CC1, and ATG101 has been identified as a central player in the autophagy network, and it represents the main entry point for autophagy-regulating kinases such as MTOR and AMPK. It is generally accepted that the ULK1 complex is constitutively assembled independent of nutrient supply. Here we report the characterization of the ATG13 region required for the binding of ULK1/2. This binding site is established by an extremely short peptide motif at the C terminus of ATG13. This motif is mandatory for the recruitment of ULK1 into the autophagy-initiating high-molecular mass complex. Expression of a ULK1/2 binding-deficient ATG13 variant in ATG13-deficient cells resulted in diminished but not completely abolished autophagic activity. Collectively, we propose that autophagy can be executed by mechanisms that are dependent or independent of the ULK1/2-ATG13 interaction.  相似文献   

19.
Shu Yang 《Autophagy》2016,12(10):1721-1737
Macroautophagy/autophagy is a cellular degradation process that sequesters organelles or proteins into a double-membrane structure called the phagophore; this transient compartment matures into an autophagosome, which then fuses with the lysosome or vacuole to allow hydrolysis of the cargo. Factors that control membrane traffic are also essential for each step of autophagy. Here we demonstrate that 2 monomeric GTP-binding proteins in Saccharomyces cerevisiae, Arl1 and Ypt6, which belong to the Arf/Arl/Sar protein family and the Rab family, respectively, and control endosome-trans-Golgi traffic, are also necessary for starvation-induced autophagy under high temperature stress. Using established autophagy-specific assays we found that cells lacking either ARL1 or YPT6, which exhibit synthetic lethality with one another, were unable to undergo autophagy at an elevated temperature, although autophagy proceeds normally at normal growth temperature; specifically, strains lacking one or the other of these genes are unable to construct the autophagosome because these 2 proteins are required for proper traffic of Atg9 to the phagophore assembly site (PAS) at the restrictive temperature. Using degron technology to construct an inducible arl1Δ ypt6Δ double mutant, we demonstrated that cells lacking both genes show defects in starvation-inducted autophagy at the permissive temperature. We also found Arl1 and Ypt6 participate in autophagy by targeting the Golgi-associated retrograde protein (GARP) complex to the PAS to regulate the anterograde trafficking of Atg9. Our data show that these 2 membrane traffic regulators have novel roles in autophagy.  相似文献   

20.
《Autophagy》2013,9(10):1491-1499
Autophagosome formation is governed by sequential functions of autophagy-related (ATG) proteins. Although their genetic hierarchy in terms of localization to the autophagosome formation site has been determined, their temporal relationships remain largely unknown. In this study, we comprehensively analyzed the recruitment of mammalian ATG proteins to the autophagosome formation site by live-cell imaging, and determined their temporal relationships. Although ULK1 and ATG5 are separated in the genetic hierarchy, they synchronously accumulate at pre-existing VMP1-positive punctate structures, followed by recruitment of ATG14, ZFYVE1, and WIPI1. Only a small number of ATG9 vesicles appear to be associated with these structures. Finally, LC3 and SQSTM1/p62 accumulate synchronously, while the other ATG proteins dissociate from the autophagic structures. These results suggest that autophagosome formation takes place on the VMP1-containing domain of the endoplasmic reticulum or a closely related structure, where ULK1 and ATG5 complexes are synchronously recruited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号