首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Archaea have developed specific tools permitting life under harsh conditions and archaeal lipids are one of these tools. This microreview describes the particular features of tetraether-type archaeal lipids and their potential applications in biotechnology. Natural and synthetic tetraether lipid structures as well as their applications in drug/gene delivery, vaccines and proteoliposomes or as lipid films are reviewed.  相似文献   

2.
3.
噬菌体是一类专性侵染细菌的病毒,在形态大小、结构组成等生物特性上与高等生物病毒具有相似性,同时噬菌体实验室操作技术简单,安全性高,在培养、计数、稳定性和灵敏度等方面具有非常大的优势。因此,将噬菌体作为指示生物模拟或替代高等生物病毒的研究和应用已开始受到国内外研究人员的关注,并取得一定进展。本文论述了噬菌体作为指示病毒的优势,并对噬菌体在病毒过滤去除效果评价、消毒效果评价、病毒传播规律研究、环境及水质监测等领域的研究和应用进行了总结分析,综述了噬菌体在各领域应用的可行性证据、应用案例及难点问题,并结合噬菌体作为指示病毒的不足之处,对进一步以噬菌体作为指示病毒的研究和应用提出建议和展望。  相似文献   

4.
The hydrothermal fluid chemistry at El Tatio Geyser Field (ETGF) in northern Chile suggests that biogenic CO2–CH4 cycling may play an important role in water chemistry, and relatively low sulfate (0.6–1 mM) and high molecular hydrogen (H2) concentrations (67–363 nM) suggest that methanogenic Archaea are present in ETGF microbial mats. In this study, δ13C analysis of dissolved inorganic carbon and methane was not indicative of biogenic methane production (δ13CCH4 values ranging from ?15‰ to ?5.3‰); however, methanogenic Archaea were successfully cultured from each of the hydrothermal sites sampled. Sanger sequencing using universal Archaea primers identified putative methanogenic orders with varying metabolic capabilities, including Methanobacteriales, Methanomicrobiales and Methanosarcinales.  相似文献   

5.
A phylogenetic analysis was carried out of a total of 58 P-type ATPases encoded within the genomes of 20 archaea species. Members from six subfamilies were identified including: putative metal-, proton-, calcium-, sodium/potassium-, potassium-, and magnesium/nickel-transporting ATPases. Six novel putative proton-ATPases from archaea species growing under different temperature and pH conditions were shown to have shorter N- and C-termini than those of orthologous yeast or plant proton-ATPases. Moreover recent biochemical data are reviewed that report functional expression of putative archaea metal- or proton-ATPases in bacteria or yeast.  相似文献   

6.
Diatom sediment records of large lakes can be used to decipher the history of ancient phytoplankton. The upper layer of the sediment is an important area of remineralization of the sedimenting phytoplankton biomass. It hosts a bacterial community different from those of both the water column and deeper sediment layers. In this work, we analyzed the structure and diversity of the communities of Bacteria and Archaea in the surface sediment core containing valves of diatoms, the major producers in Lake Baikal. Pyrosequencing of the bacterial V3–V4 region of the 16 S ribosomal RNA (rRNA) and archaeal V1–V3 16 S rRNA gene regions yielded 29,168 and 36,997 reads, respectively. In total, we have identified 33 bacterial phyla; uncultured Actinobacteria were the most abundant in the upper layers, while lower sediment was dominated by Firmicutes and Alphaproteobacteria. The composition of the archaeal community changed with depth, but was generally dominated by Crenarchaeota from the classes Marine Group I and Miscellaneous Crenarchaeotic Group, as well as Euryarchaeota from the class Thermoplasmata. These dominant bacterial and archaeal taxa are presumed to participate in the destruction of buried organic matter, which eventually leads to degradation of the diatom valves.  相似文献   

7.
The correct delivery of noncytoplasmic proteins to locations both within and outside the cell depends on the appropriate targeting signals. Protein translocation across the bacterial plasma membrane and the eukaryal endoplasmic reticulum membrane relies on cleavable N-terminal signal peptides. Although the signal peptides of secreted proteins in Bacteria and Eukarya have been extensively studied at the sequence, structure, and functional levels, little is known of the nature of archaeal signal peptides. In this report, genome-based analysis was performed in an attempt to define the amino acid composition, length, and cleavage sites of various signal peptide classes in a wide range of archaeal species. The results serve to present a picture of the archaeal signal peptide, revealing the incorporation of bacterial, eukaryal, and archaeal traits.  相似文献   

8.
Eukaryotic Cbf5 is a protein subunit of the small nucleolar RNA-protein complex. Previously, we identified, in archaeal homologs of cbf5 of the crenarchaea, Aeropyrum pernix, Sulfolobus solfataricus, and Sulfolobus tokodaii, the first examples of introns of archaeal protein-coding genes. Here, we report the immunological detection of Cbf5 protein of S. tokodaii, the product of the spliced cbf5 mRNA. The hetero-oligomeric splicing endonuclease activity from recombinant S. tokodaii subunits cleaved at the exon-intron boundaries of cbf5 pre-mRNA fragments,suggesting that synthesis of full-length Cbf5 protein requires this activity. Database searches and PCR screens identified additional cbf5 introns in some, but not all sequenced crenarchaeal genomes. The predicted secondary structures of exon-intron boundaries of many of the newly identified intron-containing cbf5 pre-mRNAs contained relaxed forms of the bulge-helix-bulge motif similar to that of S. tokodaii. These observations are consistent with previous reports indicating that subunit composition of the splicing endonuclease contributes to substrate specificity.  相似文献   

9.
10.
11.
Archaea represent a significant portion of biomass in the marine sediments and may play an important role in global carbon cycle. However, the identity and composition of deep sea sediment Archaea are unclear. Here, we used the archaeal 16S rRNA gene primers to determine the diversity and community structure of Archaea from shallow water (<100 m) and deep water (>1500 m) sediments in the South China Sea. Phylogenetically the archaeal community is separated between the shallow- and deep sea sediments, with the former being dominated by the Thaumarchaeota and the latter by the Marine Benthic Group B, E and the South African GoldMine Euryarchaeotal Group as well as Thaumarchaeota. Sand content showed significant correlation with Thaumarchaeota, suggesting that the porous media may create an oxic environment that allowed these aerobic organisms to thrive in the surface sediments. The carbon isotope composition of total organic carbon was significantly correlated to the distribution of archaeal groups, suggesting that Archaea overall may be constrained by the availability or sources of organic carbon in the sediments of the South China Sea.  相似文献   

12.

In this study, the distribution, morphology and relative abundance of Sulfate Reducing Bacterial (SRB) and Methanogenic Archaeal (MA) populations in the Black Sea sediments were investigated by using in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotide probes. Results were discussed with respect to the characteristics of sampling points. MA and SRB showed a great diversity in all sediment samples. Higher abundance of MA (20–30%) and SRB (30–35%) populations were observed within the sediments from deeper parts of the Black Sea than the shallower parts (10–11% MA and 13–14% SRB). Desulfobotulus, Desulfosarcina and Desulfococcus groups were the most commonly detected SRB groups in the Black Sea sediments. Relative percentage of these SRB groups within sediments from deeper parts of the Black Sea was in a range of 17–21% whereas that of was in a range of 4–5% within the sediments from the shallower parts. Order Methanococcales were the dominant methanogenic group in all samples. Relative percentages of order Methanococcales were in a range of 8–12% and 4–5% within sediments from deeper parts and the coastal parts of the Black Sea, respectively.  相似文献   

13.
In all three domains of life, extracytoplasmic proteins must overcome the hurdle presented by hydrophobic, lipid-based membranes. While numerous aspects of the protein translocation process have been well studied in bacteria and eukarya, little is known about how proteins cross the membranes of archaea. Analysis to date suggests that archael protein translocation is a mosaic of bacterial, eukaryal, and archaeal features, as indeed is much of archaeal biology. Archaea encode homologues of selected elements of the bacterial and eukaryal translocation machines, yet lack other important components of these two systems. Other aspects of the archaeal translocation process appear specific to this domain, possibly related to the extreme environmental conditions in which archsea thrive. In the following, current understanding of archaeal protein translocation is reviewed, as is recent progress in reconstitution of the archaeal translocation process in vitro.  相似文献   

14.
JC virus (JCV) belongs to the polyomavirus family of double-stranded DNA viruses and causes progressive multifocal leukoencephalopathy in humans. JCV encodes early proteins (large T antigen, small T antigen, and T' antigen) and four late proteins (agnoprotein, and three viral capsid proteins, VP1, VP2, and VP3). In the current study, a novel function for JCV agnoprotein in the morphogenesis of JC virion particles was identified. It was found that mature virions of agnoprotein-negative JCV are irregularly shaped. Sucrose gradient sedimentation and cesium chloride gradient ultracentrifugation analyses revealed that the particles of virus lacking agnoprotein assemble into irregularly sized virions, and that agnoprotein alters the efficiency of formation of VP1 virus-like particles. An in vitro binding assay and immunocytochemistry revealed that agnoprotein binds to glutathione S-transferase fusion proteins of VP1 and that some fractions of agnoprotein colocalize with VP1 in the nucleus. In addition, gel filtration analysis of formation of VP1-pentamers revealed that agnoprotein enhances formation of these pentamers by interacting with VP1. The present findings suggest that JCV agnoprotein plays a role, similar to that of SV40 agnoprotein, in facilitating virion assembly.  相似文献   

15.
We reported previously that the rabies virions contained a 21-kDa cellular transmembrane protein (referred to as VAP21) as a minor component (Sagara, J. et al, Microbiol. Immunol. 41(12): 947-955, 1997). In this study, we further examined the possible interactions of VAP21 with other enveloped viruses, including the vesicular stomatitis virus (VSV; negative-stranded RNA virus), Sindbis virus (positive-stranded RNA virus) and herpes simplex virus type 1 (HSV-1; double-stranded DNA virus). An immunoblot analysis demonstrated that all of these enveloped viruses contained VAP21 in the virion as a minor component. Immunoprecipitation studies suggested that VAP21 was associated with certain viral proteins in the cell, such as the matrix (M) protein of VSV, a capsid protein of Sindbis virus, and at least a capsid protein (VP5) of HSV-1. The association was disrupted by treatment with 0.5% sodium dodecyl sulfate, but resistant to the treatment with 1% NP-40 plus 1% deoxycholate. These results suggest that: 1) VAP21 is not primarily associated with the viral transmembrane glycoprotein but rather with the internal viral protein, and, 2) this association would cause the efficient incorporation of VAP21 into the virion.  相似文献   

16.
The proteasome is the central machinery for targeted protein degradation in archaea, Actinobacteria, and eukaryotes. In its basic form, it consists of a regulatory ATPase complex and a proteolytic core particle. The interaction between the two is governed by an HbYX motif (where Hb is a hydrophobic residue, Y is tyrosine, and X is any amino acid) at the C terminus of the ATPase subunits, which stimulates gate opening of the proteasomal α-subunits. In archaea, the proteasome-interacting motif is not only found in canonical proteasome-activating nucleotidases of the PAN/ARC/Rpt group, which are absent in major archaeal lineages, but also in proteins of the CDC48/p97/VAT and AMA groups, suggesting a regulatory network of proteasomal ATPases. Indeed, Thermoplasma acidophilum, which lacks PAN, encodes one CDC48 protein that interacts with the 20S proteasome and activates the degradation of model substrates. In contrast, Methanosarcina mazei contains seven AAA proteins, five of which, both PAN proteins, two out of three CDC48 proteins, and the AMA protein, function as proteasomal gatekeepers. The prevalent presence of multiple, distinct proteasomal ATPases in archaea thus results in a network of regulatory ATPases that may widen the substrate spectrum of proteasomal protein degradation.  相似文献   

17.
18.
19.
The DNA packaging enzyme of bacteriophage lambda, terminase, is a heteromultimer composed of a small subunit, gpNu1, and a large subunit, gpA, products of the Nu1 and A genes, respectively. The role of terminase in the initial stages of packaging involving the site-specific binding and cutting of the DNA has been well characterized. While it is believed that terminase plays an active role in later post-cleavage stages of packaging, such as the translocation of DNA into the head shell, this has not been demonstrated. Accordingly, we undertook a generalized mutagenesis of lambda's A gene and found ten lethal mutations, nine of which cause post-cleavage packaging defects. All were located in the amino-terminal two-thirds of gpA, separate from the carboxy-terminal region where mutations affecting the protein's endonuclease activity have been found. The mutants fall into five groups according to their packaging phenotypes: (1) two mutants package part of the lambda chromosome, (2) one mutant packages the entire chromosome, but very slowly compared to wild-type, (3) two mutants do not package any DNA, (4) four mutants, though inviable, package the entire lambda chromosome, and (5) one mutant may be defective in both early and late stages of DNA packaging. These results indicate that gpA is actively involved in late stages of packaging, including DNA translocation, and that this enzyme contains separate functional domains for its early and late packaging activities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号