首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Gliomas take a number of different genetic routes in the progression to glioblastoma multiforme, a highly invasive variant that is mostly unresponsive to current therapies. Gliomas express elevated levels of matrix metalloproteinases (MMPs), which have been implicated in the control of proliferation and invasion as well as neovascularization. Progressive loss of LGI1 expression has been associated with the development of high grade gliomas. We have shown previously that the forced re-expression of LGI1 in different glioma cells inhibits proliferation, invasiveness, and anchorage-independent growth in cells null for its expression. Here, using Affymetrix gene chip analysis, we show that reexpression of LGI1 in T98G cells results in the down-regulation of several MMP genes, in particular MMP1 and MMP3. LGI1 expression also results in the inhibition of ERK1/2 phosphorylation but not p38 phosphorylation. Inhibition of the MAPK pathway using the pharmacological inhibitors PD98059, U0126, and SB203580 in T98G LGI1-null cells inhibits MMP1 and MMP3 production in an ERK1/2-dependent manner. Treatment of LGI1-expressing cells with phorbol myristate acetate prevents the inhibition of MMP1/3 and restores invasiveness and ERK1/2 phosphorylation, suggesting that LGI1 acts through the ERK/MAPK pathway. Furthermore, LGI1 expression promotes phosphorylation of AKT, which leads to phosphorylation of Raf1(Ser-259), an event shown previously to negatively regulate ERK1/2 signaling. These data suggest that LGI1 plays a major role in suppressing the production of MMP1/3 through the phosphatidylinositol 3-kinase/ERK pathway. Loss of LGI1 expression, therefore, may be an important event in the progression of gliomas that leads to a more invasive phenotype in these cells.  相似文献   

5.
Na/H exchange regulatory factor 1 (NHERF1) is a scaffolding protein that regulates signaling and trafficking of several G protein-coupled receptors (GPCRs), including the parathyroid hormone receptor (PTH1R). GPCRs activate extracellular signal-regulated kinase (ERK)1/2 through different mechanisms. Here, we characterized NHERF1 regulation of PTH1R-stimulated ERK1/2. Parathyroid hormone (PTH) stimulated ERK1/2 phosphorylation by a protein kinase A (PKA)-dependent, but protein kinase C-, cyclic adenosine 5'-monophosphate-, and Rap1-independent pathway in Chinese hamster ovary cells stably transfected with the PTH1R and engineered to express NHERF1 under the control of tetracycline. NHERF1 blocked PTH-induced ERK1/2 phosphorylation downstream of PKA. This suggested that NHERF1 inhibitory effects on ERK1/2 occur at a postreceptor locus. Forskolin activated ERK1/2, and this effect was blocked by NHERF1. NHERF1 interacted with AKT and inhibited ERK1/2 activation by decreasing the stimulatory effect of 14-3-3 binding to B-Raf, while increasing the inhibitory influence of AKT negative regulation on ERK1/2 activation. This novel regulatory mechanism provides a new model by which cytoplasmic adapter proteins modulate ERK1/2 activation through a receptor-independent mechanism involving B-Raf.  相似文献   

6.
PTEN/MMAC is a phosphatase that is mutated in multiple human tumors. PTEN/MMAC dephosphorylates 3-phosphorylated phosphatidylinositol phosphates that activate AKT/protein kinase B (PKB) kinase activity. AKT/PKB is implicated in the inhibition of apoptosis, and cell lines and tumors with mutated PTEN/MMAC show increased AKT/PKB kinase activity and resistance to apoptosis. PTEN/MMAC contains a PDZ domain-binding site, and we show here that the phosphatase binds to a PDZ domain of membrane-associated guanylate kinase with inverted orientation (MAGI) 3, a novel inverted membrane-associated guanylate kinase that localizes to epithelial cell tight junctions. Importantly, MAGI3 and PTEN/MMAC cooperate to modulate the kinase activity of AKT/PKB. These data suggest that MAGI3 allows for the juxtaposition of PTEN/MMAC to phospholipid signaling pathways involved with cell survival.  相似文献   

7.
8.
《Cytotherapy》2021,23(10):918-930
Background aimsAcute lung injury (ALI) secondary to sepsis is a complex disease associated with high morbidity and mortality. Mesenchymal stem cells (MSCs) and their conditioned medium have been demonstrated to reduce alveolar inflammation, improve lung endothelial barrier permeability and modulate oxidative stress in vivo and in vitro. Recently, MSCs have been found to release small extracellular vesicles (sEVs) that can deliver functionally active biomolecules into recipient cells. The authors’ study was designed to determine whether sEVs released by MSCs would be effective in sepsis-induced ALI mice and to identify the potential mechanisms.MethodsA total of 6 h after cercal ligation and puncture, the mice received saline, sEV-depleted conditioned medium (sEVD-CM) or MSC sEVs via the tail vein.ResultsThe administration of MSC sEVs improved pulmonary microvascular permeability and inhibited both histopathological changes and the infiltration of polymorphonuclear neutrophils into lung tissues. In addition, the activities of antioxidant enzymes were significantly increased in the group treated with sEVs compared with the saline and sEVD-CM groups, whereas lipid peroxidation was significantly decreased. Furthermore, sEVs were found to possibly inhibit phosphorylation of the mitogen-activated protein kinase/nuclear factor kappa B (MAPK/NF-κB) pathway and degradation of IκB but increase the activities of nuclear factor erythroid 2-related factor 2 and heme oxygenase 1.ConclusionsThese findings suggest that one of the effective therapeutic mechanisms of sEVs against sepsis-induced ALI may be associated with upregulation of anti-oxidative enzymes and inhibition of MAPK/NF-κB activation.  相似文献   

9.
The ultimate biological and clinical meaning of shed HER2 extracellular domain (ECD) has remained largely unclear until recently. Oversecretion of soluble HER2 ECD has been shown to inhibit growth of HER2‐overexpressing cancer cells by promoting HER2 ECD dimerization with HER transmembrane receptors thus impairing their cross‐tyrosine phosphorylation and decreasing their activation status. HER2‐targeted drugs capable to enhance the occurrence of basal HER2 ECD shedding but simultaneously preventing formation of truncated cell membrane‐bound HER2 intracellular fragment, which exhibits an undesirable constitutive kinase activity, might be extremely efficient at managing HER2‐positive cancer disease. The dual HER1/HER2 Tyrosine Kinase inhibitor lapatinib, which works intracellularly and directly targets the TK domain of HER2, drastically augments basal shedding of HER2 ECD to inhibit HER2‐driven cancer cell growth. Lapatinib treatment significantly augments the concentration of the inactive (unphosphorylated) form of HER2 protein at the tumor cell membrane and promotes an exacerbated HER2 ECD shedding to the extracellular milieu of HER2‐overexpressing cancer cells. Exacerbated sensitivity of trastuzumab‐resistant cancer cells, which contain nearly undetectable levels of soluble HER2 ECD when compared with trastuzumab‐sensitive parental cells to lapatinib‐induced cell growth inhibition, takes place when lapatinib treatment fully restores high levels of basal HER2 ECD shedding. The dramatic augmentation of HER2 ECD shedding that occurs upon treatment of with lapatinib is fully suppressed in lapatinib‐refractory HER2‐positive cells. These findings, altogether, may provide crucial insights concerning clinical studies aimed to accurately describe HER2 ECD as a potential predictor of response or resistance to the HER2‐targeted drugs trastuzumab and lapatinib. J. Cell. Physiol. 226: 52–57, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Urokinase-type plasminogen activator (uPA) stimulates MCF-7 cell migration by binding to the UPA receptor and activating the Ras-extracellular signal-regulated kinase (Ras-ERK) signaling pathway. Studies presented here show that soluble uPA receptor and a peptide derived from the linker region between domains 1 and 2 of the uPA receptor also stimulate cellular migration via a mitogen-activated protein kinase/ERK kinase (MEK)-dependent pathway. Signaling proteins that function upstream of Ras in uPA- stimulated cells remain undefined. To address this problem, we transfected MCF-7 cells to express the noncatalytic carboxylterminal domain of focal adhesion kinase (FAK), FAK(Y397F), kinase-defective c-Src, or Shc FFF, all of which express dominant-negative activity. In each case, ERK phosphorylation and cellular migration in response to uPA were blocked. Both activities were rescued by co-transfecting the cells to express constitutively active MEK1, indicating that FAK, c-Src, and Shc are upstream of MEK. Shc was tyrosine-phosphorylated in uPA-treated cells. The level of phosphorylated Shc was increased within 1 min and remained increased for at least 30 min. Sos co-immunoprecipitated with Shc in cells that were treated with uPA for 1-2.5 min, probably reflecting the formation of Shc-Grb2/Sos complex; however, by 10 min, co-immunoprecipitation of Sos with Shc was no longer observed. Rapid dissociation of Sos from Shc represents a possible mechanism for the transient phosphorylation of ERK in uPA-treated MCF-7 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号