首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using normal swine kidney epithelial (SKE) cells that were shown to be senescent at passages 12 to 14, we have established one lifespan-extended cell line and two lifespan-extended cell lines by exogenous introduction of the human catalytic subunit of telomerase (hTERT) and simian virus 40 large T-antigen (SV40LT), all of which maintain epithelial morphology and express cytokeratin, a marker of epithelial cells. SV40LT- and hTERT-transduced immortal cell lines appeared to be smaller and exhibited more uniform morphology relative to primary and spontaneously immortalized SKE cells. We determined the in vitro lifespan of primary SKE cells using a standard 3T6 protocol. There were two steps of the proliferation barrier at 12 and 20, in which a majority of primary SKE cells appeared enlarged, flattened, vacuolated, and ss-galactosidase-positive, all phenotypical characteristics of senescent cells. Lifespan-extended SKE cells were eventually established from most of the cellular foci, which is indicative of spontaneous cellular conversion at passage 23. Beyond passage 25, the rate of population doubling of the established cells gradually increased. At passage 30, immortal cell lines grew faster than primary counterpart cells in 10% FBS-DMEM culture conditions, and only SV40LT-transduced immortal cells grew faster than primary and other SKE immortal cells in 0.5% FBS-DMEM. These lifespan-extended SKE cell lines failed to grow in an anchorage-independent manner in soft-agar dishes. Hence, three immortalized swine kidney epithelial cells that are not transformed would be valuable biological tools for virus propagation and basic kidney epithelial cell research.  相似文献   

2.
Shortening of telomeres has been hypothesized to contribute to cellular senescence and may play a role in carcinogenesis of human cells. Furthermore, activation of telomerase has frequently been demonstrated in tumor-derived and in vitro immortalized cells. In this study, we have assessed these phenomena during the life span of simian virus 40 (SV40)-transformed preimmortal and immortal human fibroblasts. We observed progressive reduction in telomere length in preimmortal transformed cells with extended proliferative capacity, with the most dramatic shortening at late passage. Telomere lengths became stabilized (or increased) in immortal fibroblasts accompanied, in one case, by the activation of telomerase. However, an independent immortal cell line that displayed stable telomeres did not have detectable telomerase activity. Furthermore, we found significant telomerase activity in two preimmortal derivatives. Our results provide further evidence for maintenance of telomeres in immortalized human fibroblasts, but they suggest a lack of causal relationship between telomerase activation and immortalization. © 1996 Wiley-Liss, Inc.  相似文献   

3.
The in vitro study of mammalian hematopoiesis is hindered by the lack of immortalized human stromal cell lines that support hematopoiesis. We have immortalized human stromal vascular smooth muscle cells characterized by the expression of the alpha-smooth muscle (alpha-SM) actin. This marker is usually down-regulated as a result of oncogenic transformation. To correct this dedifferentiation, we placed the expression of human papilloma virus 16 E6/E7 oncogenes under the control of the tissue-specific alpha-SM actin promoter. The immortalization event is rare and requires polyclonal culture, but the corresponding established line retains alpha-SM actin expression. Moreover, when compared with other lines derived from the same cells from vectors made with the same oncogenes but driven by either an internal SV40 promoter or the viral long terminal repeat, this line is less transformed as shown by anchorage-independent growth assay. We show therefore that the use of a physiological promoter allows the production of human cell lines with a conserved phenotype.  相似文献   

4.
Primary skeletal muscle myoblasts have a limited proliferative capacity in cell culture and cease to proliferate after several passages. We examined the effects of several oncogenes on the immortalization and differentiation of primary cultures of rat skeletal muscle myoblasts. Retroviruses containing a SV40 large T antigen (LT) gene very efficiently immortalize myogenic cells. The immortalized cell lines retain a very high differentiation capacity and form, in the appropriate culture conditions, a very dense network of muscle fibers. As in primary culture, cell fusion is associated with the synthesis of large amounts of muscle-specific proteins. However, unlike normal myoblasts (and previously established myogenic cell lines), nuclei in the multinucleated fibers of SV40-immortalized cells synthesize DNA and enter mitosis. Thus, withdrawal from DNA synthesis is not obligatory for cell fusion and biochemical differentiation. Using a retrovirus coding for a temperature-sensitive SV40 LT, myogenic cell lines were produced in which the SV40 LT could be inactivated by a shift from 33 degrees C to 39 degrees C. The inactivation of LT induced massive cell fusion and synthesis of muscle proteins. The nuclei in those fibers did not synthesize DNA, nor did they undergo mitosis. This approach enabled the reproducible establishment of myogenic cell lines from very small populations of myoblasts or single primary myogenic clones. Activated p53 also readily immortalized cells in primary muscle cultures, however the cells of eight out of the nine cell lines isolated had a fibroblastic morphology and could not be induced to form multinucleated fibers.  相似文献   

5.
The E6 proteins of the high-risk human papillomaviruses (HPVs) have been shown to form a complex with and induce the degradation of human p53 in vitro. To determine whether p53 is degraded more rapidly in cells expressing E6 in vivo, the half-life of p53 was determined by pulse-chase analysis in early-passage normal human keratinocytes and fibroblasts, human keratinocytes immortalized with HPV type 16 (HPV16) E6 plus E7, and nonimmortal keratinocytes transfected with E6. The results of these experiments indicate that (i) the half-life of newly synthesized p53 is relatively long (4 h) in early-passage human keratinocytes and fibroblasts but short in keratinocytes expressing E6 (15 to 30 min), (ii) a similar increased rate of p53 degradation was measured in lines immortalized with HPV16 E6 plus E7 and senescent cells expressing E6, indicating that this increase is not simply the result of selection in the immortalized lines, and (iii) very low levels of expression of E6 result in a greatly decreased half-life of p53, suggesting that E6 acts in a catalytic manner.  相似文献   

6.
7.
The effect of transforming growth factor beta type 1 (TGF-beta 1) on DNA synthesis, anchorage-dependent and anchorage-independent proliferation, cytoskeletal organization, and gene expression in ras-transformed simian virus 40 (SV40)-immortalized hepatocyte cell lines was measured. An SV40-immortalized cell line (CWSV1), a control neo-transfected and selected cell line (N1), and neo+ras-transfected and selected cell lines (NR3 and NR4) were used for this study. CWSV1 and N1 cells do not grow in soft agarose and are not tumorigenic. The ras-transformed hepatocytes NR3 and NR4 grow in soft agar and are tumorigenic. TGF-beta 1 treatment did not inhibit DNA synthesis or anchorage-dependent growth in the SV40-immortalized hepatocyte cell line CWSV1 or in the ras-transformed hepatocytes. TGF-beta 1 treatment inhibited anchorage-independent growth, increased actin cytoskeleton organization, and altered the morphology of ras-transformed hepatocytes; that is, with regard to all three of these properties, TGF-beta 1-treated ras-transformed hepatocytes more closely resembled the immortalized parent cell line. c-Ha-ras and c-myc RNA levels were not altered in TGF-beta 1-treated NR4 cells. TGF-beta 1 treatment did alter expression of some genes in NR4 cells. The level of expression of alpha 1 integrin RNA was higher in CWSV1 cells than in NR4 cells and increased in NR4 cells when they were treated with TGF-beta 1. Similarly, the levels and profiles of integrins on the cell surface of CWSV1 cells compared to NR4 cells, as determined by cell surface protein iodination, differed and in TGF-beta 1-treated NR4 cells more closely resembled the surface integrin profile for CWSV1 cells.  相似文献   

8.
While it is clear that cancer arises from the accumulation of genetic mutations that endow the malignant cell with the properties of uncontrolled growth and proliferation, the precise combinations of mutations that program human tumor cell growth remain unknown. The study of the transforming proteins derived from DNA tumor viruses in experimental models of transformation has provided fundamental insights into the process of cell transformation. We recently reported that coexpression of the simian virus 40 (SV40) early region (ER), the gene encoding the telomerase catalytic subunit (hTERT), and an oncogenic allele of the H-ras gene in normal human fibroblast, kidney epithelial, and mammary epithelial cells converted these cells to a tumorigenic state. Here we show that the SV40 ER contributes to tumorigenic transformation in the presence of hTERT and oncogenic H-ras by perturbing three intracellular pathways through the actions of the SV40 large T antigen (LT) and the SV40 small t antigen (ST). LT simultaneously disables the retinoblastoma (pRB) and p53 tumor suppressor pathways; however, complete transformation of human cells requires the additional perturbation of protein phosphatase 2A by ST. Expression of ST in this setting stimulates cell proliferation, permits anchorage-independent growth, and confers increased resistance to nutrient deprivation. Taken together, these observations define the elements of the SV40 ER required for the transformation of human cells and begin to delineate a set of intracellular pathways whose disruption, in aggregate, appears to be necessary to generate tumorigenic human cells.  相似文献   

9.
10.
In most human primary bone cells, SV40 T-antigen expression was able to expand life span for a few passages before cells undergo growth arrest, described as crisis. In this study, telomerase activity was reconstituted in human osteoblast precursors (hPOB cells) and marrow stromal cells (Saka cells) transformed with the SV40 T antigen. Bone cells with telomerase activity were able to bypass crisis and show unlimited life span. Despite chromosomal aberrations observed in hPOB-tert cells, these immortalized precursors were able to differentiate into osteoblasts like precrisis hPOB cells. Saka-tert cells enhanced the formation of human osteoclast-like cells in a similar manner as Saka cells. These results demonstrate that reconstitution of telomerase activity in transformed SV40 T-antigen human osteoblast precursors or marrow stromal cells leads to the generation of immortalized cells with a preserved phenotype.  相似文献   

11.
12.
Transformation and immortalization of human diploid fibroblasts by simian virus 40 (SV40) is at least a two-stage process, since transformants have a limited lifespan in culture. We have isolated immortalized derivatives (AR5 and HAL) from transformants generated with an origin-defective SV40 genome encoding a heat-labile large T protein (T antigen) and reported that both preimmortal and immortal transformants are continuously dependent on T antigen function for growth as determined by temperature shift experiments. In this study, we demonstrate complex formation between T antigen and the retinoblastoma susceptibility gene product (Rb) at 35 degrees C and observed a reduction in complexes under conditions of loss of T antigen function and growth inhibition at 39 degrees C. Viral oncogenes (polyomavirus large T protein and adenovirus E1A 12S protein) known to bind Rb were introduced into AR5 and HAL cells, both stably by gene transfer and transiently by virus vectors. Such double transformants are still unable to proliferate at 39 degrees C, although complex formation with the newly introduced oncogenes was demonstrated. We suggest that T antigen interacts with other cellular processes in addition to Rb to transform and immortalize human cells in culture. Our finding that p53-T antigen complexes are also temperature dependent in AR5 and HAL cells could provide such an additional mechanism.  相似文献   

13.
Pancreatic ductal adenocarcinomas arise through the accumulation of certain genetic alterations including ras, p16, p53, and DPC4. We found that activation of ras and inactivation of p53 could cooperatively induce in vitro tumorigenicity in conditionally immortalized pancreatic epithelial (IMPE) cells. IMPE cells were established from transgenic mice bearing a temperature-sensitive mutant SV40 Large T (LT) antigen. IMPE cells grew continuously under permissive conditions (33 degrees C with interferon-gamma), but rapidly suffered growth arrest under non-permissive conditions (39 degrees C without interferon-gamma). The cells showed strong expression of E-cadherin and beta-catenin as epithelial markers, and cytokeratin 19, a specific ductal cell marker. Cell proliferation under permissive conditions was associated with down-regulation of p21 expression through inactivation of p53 after overexpression of LT antigen. Intriguingly, the shift from the permissive to non-permissive culture conditions caused G2/M arrest of IMPE cells. Although the cells did not form colonies when cultured in soft agar without activation of ras, cells with ras activation via an adenovirus vector formed colonies under permissive conditions. These findings suggest that activation of ras and inactivation of p53 can cooperatively induce anchorage-independent growth of IMPE cells. This cell line might be useful for studying the processes involved in pancreatocarcinogenesis.  相似文献   

14.
Normal human cells can undergo a limited number of divisions, whereas transformed cells may have an extended life span and can give rise to immortal cells. To isolate genes involved in the immortalization process, gene expression in SV40-transformed preimmortal human fibroblasts was compared with expression in SV40-transformed immortalized fibroblasts using an mRNA differential display. We found that the growth-inhibitory protein testis-signal transduction and activation of RNA (T-STAR) a homologue of cell-cycle regulator Sam68, is strongly down-regulated in immortalized cells. Overexpression of T-STAR in the SV40-transformed immortalized cells resulted in a strong reduction of colony formation, whereas deletion of the RNA-binding domain of T-STAR abrogated this effect. Down-regulation of testis-signal transduction and activation of RNA (T-STAR) expression is found only in immortal cells isolated after a proliferative crisis accompanied with massive cell death. The strict correlation of down-regulation of T-STAR expression only in those immortal cells that arose after a clear proliferative crisis suggests that the loss of T-STAR might be necessary to bypass crisis.  相似文献   

15.
SV40 small t-antigen (ST) collaborates with SV40 large T-antigen (LT) and activated rasv12 to promote transformation in a variety of immortalized human cells. A number of oncogenes or the disruption of the general serine-threonine phosphatase protein phosphatase 2A (PP2A) can replace ST in this paradigm. However, the relationship between these oncogenes and PP2A activity is not clear. To address this, we queried the connectivity of these molecules in silico. We found that p27 was connected to each of those oncogenes that could substitute for ST. We further determined that p27 loss can substitute for the expression of ST during transformation of both rodent and human cells. Conversely, knock-in cells expressing the degradation-resistant S10A and T187A mutants of p27 were resistant to the transforming activities of ST. This suggests that p27 is an important target of the tumor-suppressive effects of PP2A and likely an important target of the multitude of cellular oncoproteins that emulate the transforming function of ST.  相似文献   

16.
Normal human cells exhibit a limited replicative life span in culture, eventually arresting growth by a process termed senescence. Progressive telomere shortening appears to trigger senescence in normal human fibroblasts and retinal pigment epithelial cells, as ectopic expression of the telomerase catalytic subunit, hTERT, immortalizes these cell types directly. Telomerase expression alone is insufficient to enable certain other cell types to evade senescence, however. Such cells, including keratinocytes and mammary epithelial cells, appear to require loss of the pRB/p16(INK4a) cell cycle control mechanism in addition to hTERT expression to achieve immortality. To investigate the relationships among telomerase activity, cell cycle control, senescence, and differentiation, we expressed hTERT in two epithelial cell types, keratinocytes and mesothelial cells, and determined the effect on proliferation potential and on the function of cell-type-specific growth control and differentiation systems. Ectopic hTERT expression immortalized normal mesothelial cells and a premalignant, p16(INK4a)-negative keratinocyte line. In contrast, when four keratinocyte strains cultured from normal tissue were transduced to express hTERT, they were incompletely rescued from senescence. After reaching the population doubling limit of their parent cell strains, hTERT(+) keratinocytes entered a slow growth phase of indefinite length, from which rare, rapidly dividing immortal cells emerged. These immortal cell lines frequently had sustained deletions of the CDK2NA/INK4A locus or otherwise were deficient in p16(INK4a) expression. They nevertheless typically retained other keratinocyte growth controls and differentiated normally in culture and in xenografts. Thus, keratinocyte replicative potential is limited by a p16(INK4a)-dependent mechanism, the activation of which can occur independent of telomere length. Abrogation of this mechanism together with telomerase expression immortalizes keratinocytes without affecting other major growth control or differentiation systems.  相似文献   

17.
18.
Epithelial-mesenchymal transition (EMT) may be critical for neoplastic progression and its eventual tumorigenicity of epithelia. In this context, we investigated whether EMT and EMT-associated features occurred after chronic ethanol treatment of human gingival keratinocytes immortalized with the E6/E7 oncogenes of human papillomavirus (HPV) type 16. Following a nine-week treatment of cells with 30 mM ethanol in keratinocyte growth medium, they were cultured in normal DMEM with 10% serum. These cell populations were able to proliferate in this medium gradually exhibiting elongated morphology indicating that these cells underwent EMT. Control cells without ethanol treatment did not survive subcultures in DMEM. Upon long-term subcultures of ethanol-treated cells, two phenotypes were obtained exhibiting epithelium-like and spindle-shape fibroblast-like morphology (respectively, termed as EPI and FIB cells), the latter indicating EMT. In comparison to EPI cells, the phenotypic transition to FIB cells was concomitant with a decrease in the expression of keratins, desmoplakins and a complete loss of K14. Moreover, FIB cell transition strongly correlates with an increase in the expression of vimentin and simple epithelial keratin K18. These alterations in FIB cells were associated with the ability of these cells to exhibit anchorage-independent growth, while EPI cells exhibited anchorage-dependent growth. Concerning the transformation stage, FIB cells represent a progressively more advanced transformed phenotype which may reflect an early step during HPV- and ethanol-dependent multi-step carcinogenesis.  相似文献   

19.
Immortalization of human preadipocytes   总被引:1,自引:0,他引:1  
Darimont C  Macé K 《Biochimie》2003,85(12):1231-1233
  相似文献   

20.
Clones of immortalized human fibroblasts with an extended life span in culture and a capability of subloning were obtained after the infection with a temperature sensitive mutant (tsA 239) of SV40 virus and pSV3neo plasmid. As compared with the parental cells, the obtained clones exhibited increased plating efficiency, decreased doubling time, and serum dependence. We did not obtained the colony formation during cultivation of immortalized cells in semiliquid agar. This means that our cells were not completely malignant. The PCR (polymerase chain reaction)-analysis has revealed the presence of viral DNA at early passages (25th passage) after the infection by tsA SV40, and its absence after a prolonged cultivation (46th passage). PCR-analysis of the clones obtained after pSV3neo transfection has revealed the presence of gene A sequences either at early (9-15), or later (62) passages. The expression of the gene A product in cells of these clones was revealed only early passages (11 and 35). Possible mechanisms of immortal phenotype origin in human diploid cells after the action of ts-mutant and other constructions of SV40 are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号