首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a procedure that enriches for temperature-sensitive (ts) mutants of vesicular stomatitis virus (VSV), Indiana serotype, which are conditionally defective in the biosynthesis of the viral glycoprotein. The selection procedure depends on the rescue of pseudotypes of known ts VSV mutants in complementation group V (corresponding to the viral G protein) by growth at 39.5 degrees C in cells preinfected with the avian retrovirus Rous-associated virus 1 (RAV-1). Seventeen nonleaky ts mutants were isolated from mutagenized stocks of VSV. Eight induced no synthesis of VSV proteins at the nonpermissive temperature and hence were not studied further. Four mutants belonged to complementation group V and resembled other ts (V) mutations in their thermolability, production at 39.5 degrees C of noninfectious particles specifically deficient in VSV G protein, synthesis at 39.5 degrees C of normal levels of viral RNA and protein, and ability to be rescued at 39.5 degrees C by preinfection of cells by avian retroviruses. Five new ts mutants were, unexpectedly, in complementation group IV, the putative structural gene for the viral nucleocapsid (N) protein. At 39.5 degrees C these mutants also induced formation of noninfectious particles relatively deficient in G protein, and production of infectious virus at 39.5 degrees C was also enhanced by preinfection with RAV-1, although not to the same extent as in the case of the group V mutants. We believe that the primary effect of the ts mutation is a reduced synthesis of the nucleocapsid and thus an inhibition of synthesis of all viral proteins; apparently, the accumulation of G protein at the surface is not sufficient to envelope all the viral nucleocapsids, or the mutation in the nucleocapsid prevents proper assembly of G into virions. The selection procedure, based on pseudotype formation with glycoproteins encoded by an unrelated virus, has potential use for the isolation of new glycoprotein mutants of diverse groups of enveloped viruses.  相似文献   

2.
3.
4.
Temperature-sensitive (ts) mutants of vesicular stomatitis virus belonging to complementation groups I, II and IV inhibited the replication of wild-type vesicular stomatitis virus when mixed infections were carried out in BHK21 cells at 32, 37, and 39.5 C. The group IV mutant (ts G 41) was most effective in this regard; wild-type virus yields were inhibited almost 1,000-fold in mixed infections with this mutant at 32 C. In the case of group I and II mutants, inhibition of wild-type virus replication at 37 and 39.5 C was accompanied by an enhancement (up to 15,000-fold) of the yields of the coinfecting ts mutant. The yields of the group IV mutant (ts G 41) were not enhanced by mixed infections with wild-type virus at any temperature, although this mutant inhibited wild-type virus replication at all temperatures. The dominance of the replication of ts mutants at 37 C provides a rationale for the selection and maintenance of ts virus in persistently infected cells.  相似文献   

5.
Cloned herpes simplex virus type 1 (HSV-1) DNA fragments were used to fine-structure map the temperature-sensitive (ts) lesions from four mutants, ts T, D, c75, and K, by marker rescue. These mutants all overproduced immediate-early viral polypeptides at the nonpermissive temperature. Although one of these viruses, ts K, gave a more restricted infected-cell polypeptide profile under these conditions than the other three, no complementation was detected between pairwise crosses of these mutants in the yield test. Recombination, however, was obtained between all mutant pairs except ts T and D. In physical mapping experiments, ts+ virus was recovered from cells coinfected with DNA of ts T, D, or c75 and BamHI fragment k from wild-type strain 17 HSV-1 DNA cloned in pAT153, whereas ts K was rescued by cloned HSV-1 BamHI-y. Both of these cloned DNA fragments contained sequences from the short repeat region of the HSV-1 genome. The ts mutations were more precisely mapped by marker rescue, using restriction enzyme fragments within BamHI-k and -y from cloned DNA. The smallest fragment able to rescue a mutant was 320 base pairs long. The order of the four mutations derived from these studies was consistent with the assignment by genetic recombination. All four lesions mapped within the coding sequences of the immediate-early polypeptide Vmw IE 175 (ICP4) which lie outside the "a" sequence. The results showed that mutations in different regions of the gene encoding Vmw IE 175 could produce similar phenotype effects at the nonpermissive temperature.  相似文献   

6.
Temperature-sensitive (ts) mutants of Newcastle disease virus have been isolated and characterized genetically (complementation), biochemically (RNA synthesis) and biologically (fusion from within and hemadsorption). Fifteen of these mutants have been divided into five complementation groups. Groups A (five mutants) and E (one mutant) are ts for RNA synthesis (RNA-) as well as for the other functions. Group B contains four RNA+ mutants of which one is ts for fusion, one for hemadsorption and two for neither function. Group C contains one RNA+ mutant which is a poor cell fuser. Group D contains two RNA+ mutants which are ts for fusion. In addition, two noncomplementing mutants (group BC) fail to complement both group B and group C mutants while exhibiting complementation with mutants in groups A, D, and E.  相似文献   

7.
The prototype member of the complementation group II temperature-sensitive (ts) mutants of vesicular stomatitis virus, ts II 052, has been investigated. In ts II 052-infected HeLa cells at the restrictive temperature (39.5 degrees C), reduced viral RNA synthesis was observed by comparison with infections conducted at the permissive temperature (30 degrees C). It was found that for an infection conducted at 39.5 degrees C, no 38S RNA or intracytoplasmic nucleocapsids were present. For nucleocapsids isolated from ts II 052 purified virions or from ts II 052-infected cells at 30 degrees C, the RNA was sensitive to pancreatic RNase after an exposure at 39.5 degrees C in contrast to the resistance observed for wild-type virus. The nucleocapsid stability of wild-type virus when heated to 63 degrees C or submitted to varying pH was not found in nucleocapsids extracted from ts II 052 purified virions. The data suggest that for ts II 052 there is an altered relationship between the viral 38S RNA and the nucleocapsid protein(s) by comparison with wild-type virus. Such results argue for the complementation group II gene product being N protein, so that the ts defect in ts II 052 represents an altered N protein.  相似文献   

8.
Nine temperature-sensitive (ts) mutants of herpes simplex virus type 1 selected for their inability to render cells susceptible to immune cytolysis after infection at the nonpermissive temperature have been characterized genetically and phenotypically. The mutations in four mutants were mapped physically by marker rescue and assigned to functional groups by complementation analysis. In an effort to determine the molecular basis for cytolysis resistance, cells infected with each of the nine mutants were monitored for the synthesis of viral glycoprotein in total cell extracts and for the presence of these glycoproteins in plasma membranes. The four mutants whose ts mutations were mapped were selected with polypeptide-specific antiserum to glycoproteins gA and gB; however, three of the four mutations mapped to DNA sequences outside the limits of the structural gene specifying these glycoproteins. Combined complementation and phenotypic analysis indicates that the fourth mutation also lies elsewhere. The ts mutations in five additional cytolysis-resistant mutants could not be rescued with single cloned DNA fragments representing the entire herpes simplex virus type 1 genome, suggesting that these mutants may possess multiple mutations. Complementation tests with the four mutants whose ts lesions had been mapped physically demonstrated that each represents a new viral gene. Examination of mutant-infected cells at the nonpermissive temperature for the presence of viral glycoproteins in total cell extracts and in membranes at the cell surface demonstrated that (i) none of the five major viral glycoproteins was detected in extracts of cells infected with one mutant, suggesting that this mutant is defective in a very early function; (ii) cells infected with six of the nine mutants exhibited greatly reduced levels of all the major viral glycoproteins at the infected cell surface, indicating that these mutants possess defects in the synthesis or processing of viral glycoproteins; and (iii) in cells infected with one mutant, all viral glycoproteins were precipitable at the surface of the infected cell, despite the resistance of these cells to cytolysis. This mutant is most likely mutated in a gene affecting a late stage in glycoprotein processing, leading to altered presentation of glycoproteins at the plasma membrane. The finding that the synthesis of both gB and gC was affected coordinately in cells infected with six of the nine mutants suggests that synthesis of these two glycoproteins, their transport to the cell surface, or their insertion into plasma membranes is coordinately regulated.  相似文献   

9.
10.
Nine temperature-sensitive (ts) mutants of nonattenuated Edmonston strain measles virus were isolated from wild-type virus which was grown in the presence of 5-fluorouracil. Adsorption, temperature shift, and complementation experiments indicated that all these mutants were restricted at an intracellular stage of infection. However, all the mutants were more rapidly inactivated at 41 C than was wild-type virus, suggesting that the ts product of each mutant either influences or is a structural component of the virus. Three complementation groups were found to be represented among the mutants. Group A contained one mutant and it did not induce synthesis of detectable amounts of viral antigen at the nonpermissive temperature (39 C). Group B consisted of six mutants which did not induce viral antigen synthesis at 39 C and one mutant which did. Group C was represented by one mutant and it induced viral antigen synthesis at 39 C. The two mutants which induced sythesis of viral antigen also induced synthesis of relatively small amounts of virus-specific RNA at 39 C. These mutants, while producing cytoplasmic and nuclear accumulations of viral antigen at 39 C, were restricted in production of syncytia and hemadsorption. All the mutants were less neurovirulent than wild-type virus, as indicated by their inability to produce acute disease in newborn hamsters.  相似文献   

11.
Mycoplasma virus L3 virions are morphologically similar to coliphage T7, contain linear double-stranded DNA of about 39 kilobase pairs, and produce a nonlytic cytocidal infection in Acholeplasma laidlawii host cells. Following nitrous acid mutagenesis, ninety-eight L3 temperature-sensitive (ts) mutants were isolated from a total of 57,000 plaque-forming units (PFU), using 37 degrees C as the permissive temperature and 41 degrees C as the nonpermissive temperature, with reversion frequencies of 10(-5) to 10(-8). Complementation tests allowed fifty-seven of the L3 ts mutants to be placed into twenty-one complementation groups. In mixed infections, recombination frequencies between mutants in different complementation groups were 10(-2) to less than 10(-6). Studies of protein synthesis in L3-infected cells showed synthesis of about twenty virus-specific proteins, including ten L3 virion proteins. After infection with L3 ts mutants from each complementation group, several different patterns of cell- and virus-specific protein synthesis were observed.  相似文献   

12.
13.
14.
15.
16.
Temperature-sensitive (ts) mutants in a number of complementation groups of herpes simplex virus type 1 (HSV-1) are deficient in DNA polymerase induction at the restrictive temperature. Twenty-two mutants in 15 complementation groups were tested for sensitivity to phosphonoacetate (PAA), a compound that inhibits HSV replication in vivo and the DNA polymerase in vitro. One mutant, tsD9, was resistant to PAA (Pr), whereas all others were sensitive. Revertants of tsD9 to the ts+ phenotype simultaneously lost PAA resistance. Additional Pr mutants were isolated from ts mutants belonging to several complementation groups of HSV-1. Double mutants (ts Pr phenotype) were used in three-factor recombination analyses to locate the PAA locus on the genetic map at a position indistinguishable from the ts lesion in tsD9. In all cases, resistance or sensitivity to PAA in vivo was correlated with resistance or sensitivity of DNA polymerase in vitro. These data are compatible with the temperature-sensitive lesion of tsD9 and the determinant of PAA sensitivity both residing in the structural gene for DNA polymerase.  相似文献   

17.
Vaccinia virus mutants ts2 and ts25, members of the same complementation group, exhibit a temperature-dependent arrest at the stage of viral DNA replication. The lesions responsible for the mutant phenotypes have been localized to the far left region of the HindIII B genomic fragment by marker rescue studies. Hybrid selection analyses established that the DNA fragments positive for rescue represented the first open reading frame of the HindIII B fragment and encoded a 30-kilodalton protein. The gene is expressed early after infection as a rightwardly transcribed 1-kilobase-pair mRNA whose coordinates were determined by S1 nuclease mapping. To further the phenotypic analysis of the mutants, the accumulation of viral DNA sequences during permissive and nonpermissive infections was quantitated. The extent of the DNA- phenotype was shown to vary in different cell types. In mouse L cells at either high or low multiplicity of infection, nonpermissive DNA synthesis was less than 5% of that seen in permissive infections. This severe defect was mirrored by correspondingly low viral yields. In infections of BSC40 monkey cells, however, the deficiencies in both DNA synthesis and virus production were far less severe. For one mutant (ts2), the temperature sensitivity in BSC40 cells varied inversely with the multiplicity of infection.  相似文献   

18.
Genetic analysis of murine hepatitis virus strain JHM.   总被引:7,自引:6,他引:1       下载免费PDF全文
We performed a genetic analysis of 37 temperature-sensitive mutants of murine hepatitis virus strain JHM. Of our mutants, 32 did not induce murine hepatitis virus-specific RNA synthesis in infected cells at the restrictive temperature, 39 degrees C. By complementation testing we have identified at least seven nonoverlapping complementation groups. Six of the genes identified in this way are required for murine hepatitis virus-specific RNA synthesis. The seventh complementation group is made up of five mutants which induced virus-specific RNA synthesis at 39 degrees C.  相似文献   

19.
Passage of the simian virus 40 (SV40) temperature-sensitive (ts) mutant tsD202 at the permissive temperature in each of three permissive lines of SV40-transformed monkey CV1 cells resulted in the emergence of temperature-insensitive virus, which plated like wild-type SV40 at the restrictive temperature on normal CV1 cells. In independent experiments, the amount of temperature-insensitive virus that appeared after passage on transformed cells was from 10(3)- to 10(6)-fold greater than the amount of ts-revertant virus that appeared after an equal number of passages in nontransformed CV1 cells. The virus rescued by passage on transformed cells bred true upon sequential plaque purification, plated on normal CV1 cells with single-hit kinetics at the restrictive temperature, and displayed no selective growth advantage on transformed cells compared to non-transformed cells. Hence, the reversion of the ts phenotype is neither due to complementation effects nor to the selection of preexisting revertants, which grow better on transformed cells. In the accompanying article (T. Vogel et al., J. Virol. 24:541-550, 1977), we present biochemical evidence that the rescue of tsD202 mediated by passage on transformed cells is due to recombination with the resident SV40 genome. Parallel experiments in which tsA, tsB, and tsC SV40 mutants were passaged in each of the three permissive lines of SV40-transformed monkey cells resulted in either only borderline levels of rescue (tsA mutants) or no detectable rescue (tsB and tsC mutants). Evidence is presented that the resident SV40 genome of the transformed monkey lines is itself a late ts mutant, and we suggest that this accounts for the lack of detectable rescue of the tsB and tsC mutants. We furthermore suggest that the borderline level of rescue observed with two tsA mutants is related to a previous finding (Y. Gluzman et al., J. Virol. 22:256-266, 1977) which indicated that the resident SV40 genome of the permissive transformed monkey cells is defective in the function required for initiation of viral DNA synthesis.  相似文献   

20.
Temperature-sensitive (ts) mutants of Cocal virus (VSV Cocal) were isolated after treatment with the base analogue mutagen, 5-fluorouracil. These mutants could be classified into four mutually complementing groups. Weak complementation was detected between certain pairs of VSV Cocal ts mutants and ts mutants of vesicular stomatitis virus (VSV) Indiana, but no complementation was observed with ts mutants of VSV New Jersey. Two complementing ts mutants of Chandipura virus, an unrelated rhabdovirus, did not complement any VSV mutant, Thus, ability to complement in the VSV group appears to be correlated with serological relationships.The RNA and protein-synthesizing capacities of these ts mutants have been determined, and it is possible to establish a correspondence between the VSV Cocal and the VSV Indiana complementation groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号