首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cerebellar deficient folia, cdf, is a spontaneous autosomal recessive mutation in the mouse with unique pathology; the cerebellar cortex of the cdf/cdf mouse has only 7 folia instead of 10, which is the normal count for the C3H/HeJ strain in which this mutation arose. The cerebellum of the cdf/cdf mouse is hypoplastic and contains mineral deposits in the ventral vermis that are not present in controls. We used an intersubspecific intercross between C3H/HeSnJ-cdf/+ and Mus musculus castaneus (CAST/Ei) to map the cdf mutation to Chromosome (Chr) 6. The most likely gene order is D6Mit16–(cdf, D6Mit3)–D6Mit70–D6Mit29–D6Mit32, which positions cdf distal to lurcher (Lc) and proximal to motor neuron degeneration 2 (mnd2). The definitive visible phenotypes and histopathologies of cdf, Lc, and mnd2 support our mapping evidence that cdf is a distinct gene. The novel pathology of cdf should help elucidate the complicated process of cerebellar folia patterning and development. cdf recombined with mouse atonal homolog 1, Math1, the mouse homolog of the Drosophila atonal gene. Received: 2 August 1996 / Accepted: 2 October 1996  相似文献   

2.
We present here the fine genetic mapping of the proximal part of mouse Chromosome (Chr) 12 between D12Mit54 and D12Mit4. This chromosomal region contains three loci, Pax9, Tcf3a, and Acrodysplasia (Adp), which seem to play an important role in pattern formation during mouse embryogenesis. The Adp mutation, which was created by transgene integration, causes skull, paw, and tail deformities. Pax9, which is expressed in the face, paws, and tail, once qualified as a possible candidate for the Adp locus. We analyzed 997 interspecific backcross progeny for recombination between the markers D12Mit54 and D12Mit4; we recovered 117 recombinants, which were further typed for Pax9, Tcf3a, Adp, D12Mit88, D12Nds1, D12Mit36, and D12Mit34. This study represents the first instance in which all the above loci have been included in a single analysis, thereby allowing unambiguous determination of the genetic order and distance between D12Mit54 and D12Mit4. From our results, we conclude that the Adp locus is distinct from either Pax9 or Tcf3a.  相似文献   

3.
Previous work identified a QTL affecting murine size (particularly tail length) in a cross between C57BL/6J and DBA/2J mice and refined its location to an 8-cM region between D1Mit30 and D1Mit57. The present study used recombinant progeny testing to fine map this QTL. Individuals from a partially congenic strain carrying chromosomes recombinant between D1Mit30 and D1Mit57 were mated to DBA/2J, generating 942 progeny. Two QTL affecting 10-week tail length were identified in this population: one at 9.7 cM distal to D1Mit30 (the position estimated in previous work), and another of smaller effect near D1Mit30. A second population (n=787) was generated by mating siblings from the progeny test population that were heterozygous for the same segment of chromosome, including only recombinants between D1Mit265 and D1Mit57. In the latter population, two QTL were also identified: one at 10.2 cM distal to D1Mit30, and another of smaller effect at the distal end of the mapped region (at D1Mit150). When the two populations were analyzed together, the estimated location of the central QTL was 10.2 cM distal to D1Mit30 and there was marginally significant evidence of the distal QTL. The central QTL explained approximately 7% of the phenotypic variance, and the 95% confidence interval for its position (determined by bootstrapping) was a 1.4-cM region, approximately the region from D1Mit451 to D1Mit219. The central QTL also affected tail length and body mass at 3 and 6 weeks of age, but to a lesser degree than 10-week tail length.  相似文献   

4.
Looptail (Lp) is a mutation that profoundly affects neurulation in mouse and is characterized by craniorachischisis, an open neural tube extending from the midbrain to the tail in embryos homozygous for the mutation. Lp maps to the distal portion of mouse chromosome 1, and as part of a positional cloning approach, we have generated a high-resolution linkage map of the Lp chromosomal region. For this, we have carried out extensive segregation analysis in a total of 706 backcross mice informative for Lp and derived from two crosses, (Lp/ + X SJL/J)F1 X SJL/J and (Lp/ + X SWR/J)F1 X SWR/J. In addition, 269 mice from a (Mus spretus X C57BL/6J)F1 X C57BL/6J interspecific backcross were also used to order marker loci and calculate intergene distances for this region. With these mice, a total of 28 DNA markers corresponding to either cloned genes or anonymous markers of the SSLP or SSCP-types were mapped within a 5-cM interval overlapping the Lp region, with the following locus order and interlocus distances (in cM): centromere-D1Mit110 / Atp1β1 / Cd3ζ / Cd3η / D1Mit145 — D1Hun14 / D1Mit15 — D1Mit111 / D1Mit112 — D1Mit114 — D1Mit148 / D1Mit205/ D1Mit36 / D1Mit146 / D1Mit147 / D1Mit270 / D1Hun13 — Fcgr2 — Mpp — Apoa2/Fcer1γ - Lp - D1Mit149 / Spna1/Fcer1α-Eph1-Hlx1/D1Mit62. These studies have allowed the delineation of a maximum genetic interval for Lp of 0.5 cM, a size amenable to physical mapping techniques.  相似文献   

5.
Infantile neuroaxonal dystrophy (INAD) is a rare autosomal recessive hereditary neurodegenerative disease of humans. So far, no responsible gene has been cloned or mapped to any chromosome. For chromosome mapping and positional cloning of the responsible gene, establishment of an animal model would be useful. Here we describe a new mouse model for INAD, named inad mouse. In this mouse, the phenotype is inherited in an autosomal recessive manner, symptoms occur in the infantile period, and the mouse dies before sexual maturity. Axonal dystrophic change appearing as spheroid bodies in central and peripheral nervous system was observed. These features more closely resembled human INAD than did those of the gad mouse, the traditional mouse model for INAD. Linkage analysis linked the inad gene to mouse Chromosome 1, with the highest LOD score (=128.6) at the D1Mit45 marker, and haplotype study localized the inad gene to a 7.5-Mb region between D1Mit84 and D1Mit25. In this linkage area some 60 genes exist: Mutation of one of these 60 genes is likely responsible for the inad mouse phenotype. Our preliminary mutation analysis in 15 genes examining the nucleotide sequence of exons of these genes did not find any sequence difference between inad mouse and C57BL/6 mouse.  相似文献   

6.
The gracile axonal dystrophy (gad) mouse, which shows hereditary sensory ataxia and motor paresis, has been morphologically characterized by the dying back type of axonal degeneration in the nerve terminals of dorsal root ganglion cells and motor neurons. In the present study, using an intraspecific backcross between gad and C57BL/6J mice, the gracile axonal dystrophy (gad) gene was mapped to a region between D5Mit197 and D5Mit113. Estimated distances between gad and D5Mit197 and between gad and D5Mit113 are 0.4 ± 0.3 and 5.0 ± 1.0 cM, respectively. The gene order was defined: centromere- D5Mit81-D5Mit233-D5Mit184/D5Mit254-D5Mit256-D5Mit197-gad-D5Mit113-D5Mit7 . The mouse map location of the gad locus appears to be in a region homologous to human 4p15-p16. Our present data suggest that the nearest flanking marker D5Mit197 provides a useful anchor for the isolation of the gad gene in a yeast artificial chromosome contig.  相似文献   

7.
Although the phenomenon of innate resistance to flaviviruses in mice was recognized many years ago, it was only recently that the genetic locus (Flv) controlling this resistance was mapped to mouse Chromosome (Chr) 5. Here we report the fine mapping of the Flv locus, using 12 microsatellite markers which have recently been developed for mouse Chr 5. The new markers were genotyped in 325 backcross mice of both (C3H/HeJxC3H/ RV)F1xC3H/HeJ and (BALB/cxC3H/RV)F1xBALB/c backgrounds, relative to Flv. The composite genetic map that has been constructed identifies three novel microsatellite loci, D5Mit68, D5Mit159, and D5Mit242, tightly linked to the Flv locus. One of those loci, D5Mit159, showed no recombinations with Flv in any of the backcross mice analyzed, indicating tight linkage (<0.3 cM). The other two, D5Mit68 and D5Mit242, exhibited two and one recombinations with Flv (0.6 and 0.3 cM) respectively, defining the proximal and distal boundaries of a 0.9-cM segment around this locus. The proximal flanking marker, D5Mit68, maps to a segment on mouse Chr 5 homologous to human Chr 4. This, together with the previous data produced by our group, locates Flv to a region on mouse Chr 5 carrying segments that are conserved on either human Chr 4, 12, or 7, but present knowledge does not allow precise identification of the syntenic element.  相似文献   

8.
Linkage studies have identified many chromosomal regions containing obesity genes in mice. However, only a few of these quantitative trait loci (QTLs) have been used to guide the production of congenic mouse strains that retain obesity phenotypes. We seek to identify chromosomal regions containing obesity genes in the BSB model of spontaneous obesity because the BSB model is a multigenic obesity model. Previous studies identified QTLs on Chromosomes (Chrs) 2, 6, 7,12, and 15. BSB mice are made by backcross of lean C57BL/6J × Mus spretus. F1s were backcrossed to C57BL/6J mice to produce BSB progeny. We have constructed a new BSB cross and produced congenic mice with obesity phenotypes by marker-directed selection called B6.S–D2Mit194D2Mit311. We found a highly significant QTL for percentage body lipid on Chr 2 just proximal to the Agouti locus. Chr 2 congenics were constructed to determine whether the main effects would be detectable. We observed highly significant linkage of the Chr 2 congenic containing Agouti and containing markers distal to D2Mit311 and proximal to D2Mit194. Thus, this congenic contains approximately 14.6 cM or 30 Mb (about 1.1% of the spretus mouse genome) and several hundred genes. The obesity phenotype of the QTL is retained in the congenic. The congenic can now be used to model the genetic and physiological basis for a relatively simple, perhaps monogenic, obesity.  相似文献   

9.
Previous quantitative trait loci (QTL) mapping studies document that the distal region of mouse Chromosome (Chr) 1 contains a gene(s) that is in large part responsible for the difference in seizure susceptibility between C57BL/6 (B6) (relatively seizure-resistant) and DBA/2 (D2) (relatively seizure-sensitive) mice. We now confirm this seizure-related QTL (Szs1) using reciprocal, interval-specific congenic strains and map it to a 6.6-Mb segment between Pbx1 and D1Mit150. Haplotype conservation between strains within this segment suggests that Szs1 may be localized more precisely to a 4.1-Mb critical interval between Fcgr3 and D1Mit150. We compared the coding region sequences of candidate genes between B6 and D2 mice using RT-PCR, amplification from genomic DNA, and database searching and discovered 12 brain-expressed genes with SNPs that predict a protein amino acid variation. Of these, the most compelling seizure susceptibility candidate is Kcnj10. A survey of the Kcnj10 SNP among other inbred mouse strains revealed a significant effect on seizure sensitivity such that most strains possessing a haplotype containing the B6 variant of Kcnj10 have higher seizure thresholds than those strains possessing the D2 variant. The unique role of inward-rectifying potassium ion channels in membrane physiology coupled with previous strong association between ion channel gene mutations and seizure phenotypes puts even greater focus on Kcnj10 in the present model. In summary, we confirmed a seizure-related QTL of large effect on mouse Chr 1 and mapped it to a finely delimited region. The critical interval contains several candidate genes, one of which, Kcnj10, exhibits a potentially important polymorphism with regard to fundamental aspects of seizure susceptibility.  相似文献   

10.
Tail kinks (tk) is a classical mouse skeletal mutation, located on Chromosome (Chr) 9. As the first step for the positional cloning of the tk gene, we have established a genetic map of a region surrounding the tk locus by generating a backcross segregating for tk. From this backcross, 1004 progeny were analyzed for the coat-color phenotype of the proximally located dilute (d) gene and for the distally flanking microsatellite marker, D9Mit12. Fifty-six recombinants between d and tk and 75 recombinants between tk and D9Mit12 were identified, completing a panel of 130 recombinants including one double recombinant. This panel allowed us to map five microsatellite loci as well as d and Mod-1 with respect to tk. We show that one of the microsatellite markers mapped, D9Mit9, does not recombine at all with tk in our backcross. This indicates that the D9Mit9 locus will serve as a good starting point for a chromosomal walk to the tk gene.  相似文献   

11.
The ability to sense gravity is enhanced by an extracellular structure that overlies the macular sensory epithelium. This complex consists of high density particles, otoconia, embedded within a gelatinous membrane. The tilted mouse specifically lacks otoconia, yet has no other detectable anatomic lesions. Furthermore, the penetrance of the tilted phenotype is nearly 100%. This mouse provides a model to identify genes that are involved in the development and function of vestibular otoconia. Using SSLP markers, we have mapped the tilted (tlt) gene on mouse Chromosome (Chr) 5 between D5Mit421 and D5Mit353/D5Mit128/D5Mit266/D5Mit267 by analysis of the progeny of an intersubspecific F2 intercross. We also mapped the fibroblast growth factor receptor 3 (Fgfr3) gene, a potential candidate for tlt, and the Huntington's disease homolog (Hdh) gene to D5Mit268, approximately 4.3 centiMorgans (cM) from the tilted locus. This study excludes both Fgfr3 and Hdh as candidate genes for tlt and identifies closely linked microsatellite markers that will be useful for the positional cloning of tlt. Received: 17 November 1998 / Accepted: 1 February 1999  相似文献   

12.
Mature DBA/2J (D2) mice are very sensitive to seizures induced by various chemical and physical stimuli, whereas C57BL/6J (B6) mice are relatively seizure resistant. We have conducted a genome-wide search for quantitative trait loci (QTLs) influencing the differential sensitivity of these strains to kainic acid (KA)-induced seizures by studying an F2 intercross population. Parental, F1, and F2 mice (8–10 weeks of age) were injected subcutaneously with 25 mg/kg of KA and observed for 3 h. Latencies to focal and generalized seizures and status epilepticus were recorded and used to calculate an overall seizure score. Results of seizure testing indicated that the difference in susceptibility to KA-induced seizures between D2 and B6 mice is a polygenic phenomenon with at least 65% of the variance due to genetic factors. First-pass genome screening (10-cM marker intervals) in F2 progeny (n = 257) documented a QTL of moderate effect on Chromosome (Chr) 1 with a peak LOD score of 5.5 (17% of genetic variance explained) localized between D1Mit30 and D1Mit16. Provisional QTLs of small effect were detected on Chr 11 (D11Mit224D11Mit14), 15 (D15Mit6D15Mit46) and 18 (D18Mit9D18Mit144). Multiple locus models generally confirmed the Mapmaker/QTL results and also provided evidence for another QTL on Chr 4 (D4Mit9). Multilocus analysis of seizure severity suggested that additional loci on Chrs 5 (D5Mit11), 7 (D7Mit66), and 15 (D15Nds2) might also contribute to KA-induced seizure response. Overall, our results document a complex genetic determinism for KA-induced seizures in these mouse strains with contributions from as many as eight QTLs. Received: 16 April 1996 / Accepted: 21 October 1996  相似文献   

13.
Strain distribution patterns (SDPs) of selected loci previously mapped to murine Chromosomes (Chrs) 10, 13, 17, and 18 are reported for the AXB, BXA recombinant inbred (RI) strain set derived from the progenitor strains A/J (A) and C57BL/6J (B). The loci included the simple sequence length polymorphisms (D10Nds1, D10Mit2, D10Mit10, D10Mit14, D13Mit3, D13Nds1, D13Mit10, D13Mit13, D13Mit7, D13Mit11, D17Mit18, D17Mit10, D17Mit20, D17Mit3, D17Mit2, D18Mit17, D18Mit9, and D18Mit4), the restriction fragment length polymorphisms Pdea and Csfmr, and the biochemical marker AS-1. These loci were chosen because they map to genomic regions that had few or no genetic markers in the AXB, BXA RI set. Several of these loci also were typed in backcross progeny of matings of the (AXB)F1 to strain A or B. The strain distribution patterns for chromosomes 10, 13, 17, and 18 are reported, and the gene order and map distances determined from the backcross data. The addition of these markers to the AXB, BXA RI strain set increases the genomic region over which linkage for new markers can be detected.  相似文献   

14.
The Lith1 region on Chromosome (Chr) 2 contains a gene that markedly affects the prevalence of cholesterol gallstones in inbred mice. We report the high-resolution genetic and radiation hybrid maps of the chromosomal region surrounding Lith1, using three resources: a DNA panel from 188 progeny from two reciprocal backcrosses between C57BL/6 and Mus spretus inbred strains; 423 progeny of an N4 generation from backcrossing the susceptible C57L/J alleles at Lith1 into the resistant AKR/J strain; and the newly developed hamster–mouse T31 radiation hybrid panel. We mapped 17 microsatellite markers in the D2Mit182 to D2Mit14 region and two candidate genes for Lith1, the canalicular bile salt export pump (Bsep) also known as sister of P-glycoprotein (Spgp) and the low-density-lipoprotein-receptor-related gene megalin (Gp330). Both genetic maps were in agreement and ordered the microsatellite markers into a 10.4 ± 1.5 cM region. The high-resolution physical map revealed ordering of microsatellite markers and relative distances between markers in almost complete agreement with the genetic maps. Mapping of Bsep revealed its location on Chr 2, homologous to the human chromosomal position (Nature Genet 20, 233–238, 1998). The radiation hybrid results also provided the highest resolution of the area containing the two candidate genes, which both mapped in the Lith1 region with close linkage, being separated by a distance of only 15 cR3000. The total radiation hybrid map length of the region between D2Mit182 and D2Mit14 was 326 cR3000, suggesting that 31 cR3000 is equivalent to 1 cM in this region of Chr 2. Received: 29 April 1999 / Accepted: 21 July 1999  相似文献   

15.
Legionella pneumophila is a strict intracellular pathogen that replicates in the professional phagocytes of the human and guinea pig host. Although murine macrophages from most inbred strains are non-permissive to intracellular replication of L. pneumophila, inflammatory macrophages from the mouse strain A/J are completely permissive to intracellular replication of this bacterium. This genetic difference is controlled by the expression of a single autosomal gene designated Lgn1, with non-permissiveness behaving as completely dominant over permissiveness. We have used a total of 25 AXB/BXA recombinant inbred mouse strains and 182 (A/JxC57BL/6J)xA/J segregating backcross progeny (A/J, permissive; C57BL/6J, non-permissive) to map the Lgn1 gene. Animals were individually type for tolerance to intracellular replication by in vitro infection of their inflammatory macrophages with L. pneumophila. All animals segregated into two non-overlapping groups. Examination of the strain distribution pattern of the AXB/BXA strains for Lgn1 initially identified linkage to Chromosome (Chr) 13 markers. Genotyping of the 25 AXB/BXA strains and the 182 backcross progeny for 11 Chr 13 markers established that Lgn1 mapped to Chr 13, with the gene order and intergene distance D13Mit231-(5.5±1.5)-D13Mit193-(2.2±0.9)-D13Mit194-(1.1±0.6)-D13Mit128-(2.6±1.0)-Lgn1-(2.2±0.9)-D13Mit70-(3.9±1.3)-D13Mit73-(7.2±1.7)-D13Mit53-(0.7±0.5)-D13Mit32-(0.7±0.5)-D13Mit77-(0.7±0.5)-D13Mit78. This portion of Chr 13 is homologous to the distal portion of human Chr 5, 5q11–5q13, suggesting a possible location of a human LGN1 homolog. Understanding the molecular basis of the high permissiveness of A/J macrophage to L. pneumophila may shed light on the survival strategy of this bacterium in highly permissive human phagocytes. This may be achieved by positional cloning of Lgn1, and the identification of the Lgn1 subchromosomal region reported here is a first step towards that goal.  相似文献   

16.
A mouse model is an invaluable tool to tackle genesis of human congenital diseases that have so far eluded human studies. Homozygote for the iv mutation, the murine Si/Col strain presents a left-right lateralization defect of thoracic and abdominal organs and heart defects very similar to human ones. This iv mutation has been mapped to the region between the Aat and Igh-C loci, suggesting the presence of an equivalent human gene in the human syntenic 14q3 region. A precise linkage map of the region is, there-fore, of great interest since it will contribute to the genetic approach of the iv gene. Analysis of 242 backcross progeny from Mus musculus (MAI) or spretus strains of mice and SI/Col mice has allowed mapping of the iv gene to a linkage group of eight markers. It includes four genes: Aat (1-antitrypsin), Ckb (creatine kinase, brain form), Crip (cysteine-rich intestinal protein), and Igh-C (immunoglobulin heavy chain constant region complex); three murine microsatellites: D12Mit6, D12Mit7, and D12Mit8; and one new marker, D12Mtpl, defined by a minisatellite human probe, pYNZ2. After analysis of the data by the LINKAGE program, the following multilocus map has been constructed: centromere-D12Mit6-6.9 cM-D12Mit7-1.7 cM-D12Mtp1-2.6 cM-Aat-5.0 cM-(Ckb, Igh-C)-0.4 cM-D12Mit8-0.4 cM-Crip-11.2 cM-iv-telomere. This map differs from the previous map in placing iv locus telomeric to Igh-C. D12Mit6 and D12Mit7 are now precisely mapped centromeric to the locus Aat. In addition, a new locus D12Mtp1 is located between Aat and D12Mit7.  相似文献   

17.
A single recessive gene, ter (teratoma), causes germ cell deficiency and a high incidence of congenital testicular teratomas in the 129/Sv-ter strain of the mouse. Linkage analyses between the ter gene and 36 marker genes of 19 chromosomes were performed with matings between the C57BL/6J-ter congenic strain and four inbred strains. Results showed that the ter gene was linked to D18Mit9, D18Mit14, and D18Mit17 on Chromosome (Chr) 18. Gene order estimated on the basis of recombination distance (in centimorgans) was [centromere-D18Mit14-5.1 (cM)-ter-0 (cM)-D18Mit17-23.8 (cM)-D18Mit9]. D18Mit17 is the microsatellite DNA of the Grl-1 (glucocorticoid receptor-1) locus. We conclude that the ter gene is closely linked to Grl-1 on Chr 18 and is a new mutation involving the developmental modification of primordial germ cells in mice.Deceased  相似文献   

18.
The H2-M region is the most distal part of the mouse major histocompatibility complex (Mhc) and is likely to include the distal breakpoint of the fourth t-inversion, In(17)4d. The conserved synteny breakpoint between mouse and human is located in the H2-M region between D17Leh89, a putative olfactory receptor gene, and Pgk2 (phosphoglycerate kinase 2). To analyze the H2-M region, we screened a mouse bacterial artificial chromosome (BAC) library, using the D17Mit64, D17Tu49, D17Leh89, D17Leh467, and Pgk2 markers. Thirty-eight BAC clones were obtained and mapped in five clusters, and 25 sequence-tagged site (STS) markers were newly developed. The regions surrounding D17Tu49 and D17Leh467 are abundant in L1 repeat sequences and may, therefore, be candidates for the breakpoints of conserved synteny and t-inversion. D17Leh89 was linked to D17Mit64 by two contiguous BAC clones. The Aeg1 (acidic epididymal glycoprotein 1) and Aeg2 genes were mapped close to Pgk2, on the same BAC clones. The genetic length between D17Leh89–D17Mit64 and Pgk2–Aeg can be estimated as 0.5–0.7 centiMorgan (cM), and the most distal class I gene, H2-M2, can be placed 0.3–1.0 cM proximal to the t-inversion breakpoint. A recombinational hotspot is suggested to be located between Aeg and Tpx1 in an interspecific cross of (C57BL/6J ×Mus spretus). Received: 23 July 1997 / Accepted: 13 November 1997  相似文献   

19.
Rbt (Rabo torcido) is a new semidominant mouse mutant with a variety of skeletal abnormalities. Heterozygous Rbt mutants display homeotic anteroposterior patterning problems along the axial skeleton that resemble Polycomb group and trithorax gene mutations. In addition, the Rbt mutant displays strong similarities to the phenotype observed in Ts (Tail-short), indicating also a homeotically transformed phenotype in these mice. We have mapped the Rbt locus to an interval of approximately 6 cM on mouse Chromosome (Chr) 11 between microsatellite markers D11Mit128 and D11Mit103. The Ts locus was mapped within a shorter interval of approximately 3 cM between D11Mit128 and D11Mit203. This indicates that Rbt and Ts may be allelic mutations. Sox9, the human homolog of which is responsible for the skeletal malformation syndrome campomelic dysplasia, was mapped proximal to D11Mit128. It is, therefore, unlikely that Ts and Rbt are mouse models for this human skeletal disorder. Received: 14 April 1996 / Accepted: 22 July 1996  相似文献   

20.
In this paper, we executed genome mapping and comparative mapping analyses for cvd and hob, autosomal recessive mutations with cerebellar vermis defect and cerebellar dysplasia in the rat. For the linkage analysis, we produced three sets of backcross progeny, (ACI x CVD)F(1) and (F344 x CVD)F(1) females crossed to a cvd homozygous male rat, and (HOB x WKY)F(1) males crossed to hob homozygous female rats. Analysis of the segregation patterns of simple sequence length polymorphism (SSLP) markers scanning the whole rat genome allowed the mapping of these autosomal recessive mutations to rat Chromosome (Chr) 2. The most likely gene order is D2Mgh12 - D2Rat86 - D2Mit15 - D2Rat185 - cvd - D2Rat66 - D2Mgh13, and D2Mit18 - Fga -D2Mit14 - D2Rat16 - hob - D2Mgh13. Crossing test between a proven cvd heterozygous and a hob heterozygous rats demonstrated their allelism. Furthermore, comparative mapping indicated the cvd locus corresponds to mouse chromosome 3 and a strong candidate gene Unc5h3, a causative gene for the rostral cerebellar malformation mouse, was implicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号