首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Through a continuous in vivo drug pressure protocol, using mice as experimental model, we induced benznidazole resistance in Trypanosoma cruzi stocks. Full resistance was obtained for four out of five T. cruzi stocks analyzed. However, the number of benznidazole doses (40–180), as well as the time (4–18 months) necessary to induce resistance varied among the different T. cruzi stocks. The resistance phenotype remained stable after T. cruzi stocks has been maintained by 12 passages in mice (six months) and in acellular culture for the same time. However, the maintenance of resistant parasite for 12 months in acellular culture induces a reduction in its level of benznidazole resistance, while no alteration was detected in parasite maintained for the same time in mice. The data showed the stability of the resistance acquired by drug pressure, but suggest the possibility of reversible changes in the resistance levels after maintenance for long time in acellular culture.  相似文献   

2.
The nitroheterocyclic drugs nifurtimox and benznidazole are first-line drugs available to treat Chagas disease; however, they have limitations, including long treatment courses and toxicity. Strategies to overcome these limitations include the identification of new drugs with specific target profiles, re-dosing regimens for the current drugs, drug repositioning and combination therapy. In this work, we evaluated combination therapy as an approach for optimization of the current therapeutic regimen for Chagas disease. The curative action of benznidazole/itraconazole combinations was explored in an established infection of the mice model with the T. cruzi Y strain. The activities of the benznidazole/itraconazole combinations were compared with the results from those receiving the same dosage of each individual drug. The administration of benznidazole/itraconazole in combination eliminated parasites from the blood more efficiently than each drug alone. Here, there was a significant reduction of the number of treatment days (number of doses) necessary to induce parasitemia suppression with the benznidazole/itraconazole combination, as compared to each compound administered alone. These results clearly indicate the enhanced effects of these drugs in combination, particularly at the dose of 75 mg/kg, as the effects observed with the drug combinations were four times more effective than those of each drug used alone. Moreover, benznidazole/itraconazole treatment was shown to prevent or decrease the typical lesions associated with chronic experimental Chagas disease, as illustrated by similar levels of inflammatory cells and fibrosis in the cardiac muscle tissue of healthy and treated mice. These results emphasize the importance of exploring the potential of combination treatments with currently available compounds to specifically treat Chagas disease.  相似文献   

3.
Current knowledge of the biochemistry of Trypanosoma cruzi has led to the development of new drugs and the understanding of their mode of action. Some trypanocidal drugs such as nifurtimox and benznidazole act through free radical generation during their metabolism. T. cruzi is very susceptible to the cell damage induced by these metabolites because enzymes scavenging free radicals are absent or have very low activities in the parasite. Another potential target is the biosynthetic pathway of glutathione and trypanothione, the low molecular weight thiol found exclusively in trypanosomatids. These thiols scavenge free radicals and participate in the conjugation and detoxication of numerous drugs. Inhibition of this key pathway could render the parasite much more susceptible to the toxic action of drugs such as nifurtimox and benznidazole without affecting the host significantly. Other drugs such as allopurinol and purine analogs inhibit purine transport in T. cruzi, which cannot synthesize purines de novo. Nitroimidazole derivatives such as itraconazole inhibit sterol metabolism. The parasite's respiratory chain is another potential therapeutic target because of its many differences with the host enzyme complexes. The pharmacological modulation of the host's immune response against T. cruzi infection as a possible chemotherapeutic target is discussed. A large set of chemicals of plant origin and a few animal metabolites active against T. cruzi are enumerated and their likely modes of action are briefly discussed.  相似文献   

4.

Background

The neglected parasitic infection Chagas disease is rapidly becoming a globalised public health issue due to migration. There are only two anti-parasitic drugs available to treat this disease, benznidazole and nifurtimox. Thus it is important to identify and validate new drug targets in Trypanosoma cruzi, the causative agent. T. cruzi expresses an ER-localised ascorbate-dependent peroxidase (TcAPx). This parasite-specific enzyme has attracted interest from the perspective of targeted chemotherapy.

Methodology/Principal Findings

To assess the importance of TcAPx in protecting T. cruzi from oxidative stress and to determine if it is essential for virulence, we generated null mutants by targeted gene disruption. Loss of activity was associated with increased sensitivity to exogenous hydrogen peroxide, but had no effect on susceptibility to the front-line Chagas disease drug benznidazole. This suggests that increased oxidative stress in the ER does not play a significant role in its mechanism of action. Homozygous knockouts could proceed through the entire life-cycle in vitro, although they exhibited a significant decrease in their ability to infect mammalian cells. To investigate virulence, we exploited a highly sensitive bioluminescence imaging system which allows parasites to be monitored in real-time in the chronic stage of murine infections. This showed that depletion of enzyme activity had no effect on T. cruzi replication, dissemination or tissue tropism in vivo.

Conclusions/Significance

TcAPx is not essential for parasite viability within the mammalian host, does not have a significant role in establishment or maintenance of chronic infections, and should therefore not be considered a priority for drug design.  相似文献   

5.
Chagas disease is a vector‐borne disease caused by the protozoan parasite Trypanosoma cruzi. Current therapy involves benznidazole. Benznidazole and other drugs can modify gene expression patterns, improving the response to the inflammatory influx induced by T. cruzi and decreasing the endothelial activation or immune cell recruitment, among other effects. Here, we performed a microarray analysis of human umbilical vein endothelial cells (HUVECs) treated with benznidazole and the anti‐inflammatory drugs acetylsalicylic acid or simvastatin and infected with T. cruzi. Parasitic infection produces differential expression of a set of genes in HUVECs treated with benznidazole alone or a combination with simvastatin or acetylsalicylic acid. The differentially expressed genes were involved in inflammation, adhesion, cardiac function, and remodeling. Notch1 and high mobility group B1 were genes of interest in this analysis due to their importance in placental development, cardiac development, and inflammation. Quantitative polymerase chain reaction confirmation of these two genes indicated that both are upregulated in the presence of benznidazole.  相似文献   

6.
We describe some biological and molecular characteristics of a Trypanosoma cruzi isolate derived from a Triatomine captured in Nicaragua. PCR based typification showed that this isolate, named Nicaragua, belonged to the lineage Tc I. Nicaragua infected culture cells were treated with allopurinol, showing different behavior according to the cellular compartment, being cardiomyocyte primary cultures more resistant to this drug. The course of the infection in a mice experimental model and its susceptibility to benznidazole and allopurinol was analyzed. In benznidazole treatment, mice reverted the high lethal effect of parasites during the acute infection, however, a few parasites were detected in the heart of 88% of mice 1 year post-infection. Since T. cruzi is a heterogeneous species population it is important to study and characterize different parasites actually circulating in humans in endemic areas. In this work we show that T. cruzi Nicaragua isolate, is sensitive to early benznidazole treatment.  相似文献   

7.
BackgroundChagas disease, a neglected tropical disease endemic to Latin America caused by the parasite Trypanosoma cruzi, currently affects 6–7 million people and is responsible for 12,500 deaths each year. No vaccine exists at present and the only two drugs currently approved for the treatment (benznidazole and nifurtimox), possess serious limitations, including long treatment regimes, undesirable side effects, and frequent clinical failures. A link between parasite genetic variability and drug sensibility/efficacy has been suggested, but remains unclear. Therefore, we investigated associations between T. cruzi genetic variability and in vitro benznidazole susceptibility via a systematic article review and meta-analysis.Methodology/Principal findingsIn vitro normalized benznidazole susceptibility indices (LC50 and IC50) for epimastigote, trypomastigote and amastigote stages of different T. cruzi strains were recorded from articles in the scientific literature. A total of 60 articles, which include 189 assays, met the selection criteria for the meta-analysis. Mean values for each discrete typing unit (DTU) were estimated using the meta and metaphor packages through R software, and presented in a rainforest plot. Subsequently, a meta-regression analysis was performed to determine differences between estimated mean values by DTU/parasite stage/drug incubation times. For each parasite stage, some DTU mean values were significantly different, e.g. at 24h of drug incubation, a lower sensitivity to benznidazole of TcI vs. TcII trypomastigotes was noteworthy. Nevertheless, funnel plots detected high heterogeneity of the data within each DTU and even for a single strain.Conclusions/SignificanceSeveral limitations of the study prevent assigning DTUs to different in vitro benznidazole sensitivity groups; however, ignoring the parasite’s genetic variability during drug development and evaluation would not be advisable. Our findings highlight the need for establishment of uniform experimental conditions as well as a screening of different DTUs during the optimization of new drug candidates for Chagas disease treatment.  相似文献   

8.
Trypanosoma cruzi is the causal agent of Chagas Disease that is endemic in Latin American, afflicting more than ten million people approximately. This disease has two phases, acute and chronic. The acute phase is often asymptomatic, but with time it progresses to the chronic phase, affecting the heart and gastrointestinal tract and can be lethal. Chronic Chagas cardiomyopathy involves an inflammatory vasculopathy. Endothelial activation during Chagas disease entails the expression of cell adhesion molecules such as E-selectin, vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1) through a mechanism involving NF-κB activation. Currently, specific trypanocidal therapy remains on benznidazole, although new triazole derivatives are promising. A novel strategy is proposed that aims at some pathophysiological processes to facilitate current antiparasitic therapy, decreasing treatment length or doses and slowing disease progress. Simvastatin has anti-inflammatory actions, including improvement of endothelial function, by inducing a novel pro-resolving lipid, the 5-lypoxygenase derivative 15-epi-lipoxin A4 (15-epi-LXA4), which belongs to aspirin-triggered lipoxins. Herein, we propose modifying endothelial activation with simvastatin or benznidazole and evaluate the pathways involved, including induction of 15-epi-LXA4. The effect of 5 μM simvastatin or 20 μM benznidazole upon endothelial activation was assessed in EA.hy926 or HUVEC cells, by E-selectin, ICAM-1 and VCAM-1 expression. 15-epi-LXA4 production and the relationship of both drugs with the NFκB pathway, as measured by IKK-IKB phosphorylation and nuclear migration of p65 protein was also assayed. Both drugs were administered to cell cultures 16 hours before the infection with T. cruzi parasites. Indeed, 5 μM simvastatin as well as 20 μM benznidazole prevented the increase in E-selectin, ICAM-1 and VCAM-1 expression in T. cruzi-infected endothelial cells by decreasing the NF-κB pathway. In conclusion, Simvastatin and benznidazole prevent endothelial activation induced by T. cruzi infection, and the effect of simvastatin is mediated by the inhibition of the NFκB pathway by inducing 15-epi-LXA4 production.  相似文献   

9.
Chagas disease, a chronic systemic parasitosis caused by the Kinetoplastid protozoon Trypanosoma cruzi, is the first cause of cardiac morbidity and mortality in poor rural and suburban areas of Latin America and the largest parasitic disease burden in the continent, now spreading worldwide due to international migrations. A recent change in the scientific paradigm on the pathogenesis of chronic Chagas disease has led to a consensus that all T. cruzi‐seropositive patients should receive etiological treatment. This important scientific advance has spurred the rigorous evaluation of the safety and efficacy of currently available drugs (benznidazole and nifurtimox) as well as novel anti‐T. cruzi drug candidates in chronic patients, who were previously excluded from such treatment. The first results indicate that benznidazole is effective in inducing a marked and sustained reduction in the circulating parasites’ level in the majority of these patients, but adverse effects can lead to treatment discontinuation in 10–20% of cases. Ergosterol biosynthesis inhibitors, such as posaconazole and ravuconazole, are better tolerated but their efficacy at the doses and treatment duration used in the initial studies was significantly lower; such results are probably related to suboptimal exposure and/or treatment duration. Combination therapies are a promising perspective but the lack of validated biomarkers of response to etiological treatment and eventual parasitological cures in chronic patients remains a serious challenge.  相似文献   

10.
Trypanosoma cruzi, the etiologic agent of Chagas disease, is an obligate intracellular parasite that exploits different host vesicular pathways to invade the target cells. Vesicular and target soluble N‐ethylmaleimide‐sensitive factor attachment protein receptors (SNAREs) are key proteins of the intracellular membrane fusion machinery. During the early times of Tcruzi infection, several vesicles are attracted to the parasite contact sites in the plasma membrane. Fusion of these vesicles promotes the formation of the parasitic vacuole and parasite entry. In this work, we study the requirement and the nature of SNAREs involved in the fusion events that take place during Tcruzi infection. Our results show that inhibition of N‐ethylmaleimide‐sensitive factor protein, a protein required for SNARE complex disassembly, impairs Tcruzi infection. Both TI‐VAMP/VAMP7 and cellubrevin/VAMP3, two v‐SNAREs of the endocytic and exocytic pathways, are specifically recruited to the parasitophorous vacuole membrane in a synchronized manner but, although VAMP3 is acquired earlier than VAMP7, impairment of VAMP3 by tetanus neurotoxin fails to reduce Tcruzi infection. In contrast, reduction of VAMP7 activity by expression of VAMP7's longin domain, depletion by small interfering RNA or knockout, significantly decreases Tcruzi infection susceptibility as a result of a minor acquisition of lysosomal components to the parasitic vacuole. In addition, overexpression of the VAMP7 partner Vti1b increases the infection, whereas expression of a KIF5 kinesin mutant reduces VAMP7 recruitment to vacuole and, concomitantly, Tcruzi infection. Altogether, these data support a key role of TI‐VAMP/VAMP7 in the fusion events that culminate in the Tcruzi parasitophorous vacuole development.  相似文献   

11.
The trypanocidal activity of N-isopropyl oxamate (NIPOx) and the ethyl ester of N-isopropyl oxamate (Et-NIPOx) were tested on cultured epimastigotes (in vitro) and on murine trypanosomiasis (in vivo) using five different T. cruzi strains. When benznidazole and nifurtimox, used for comparison, were tested we found that only three of these T. cruzi strains were affected, whereas the other two strains, Miguz and Compostela, were resistant to the in vitro and the in vivo trypanocidal activity of these substances. In addition, when NIPOx was tested on cultured epimastigotes and on mice parasitaemia, trypanocidal activity was not obtained on either of these T. cruzi strains. Our experiments strongly suggest that NIPOx does not penetrate intact epimastigotes due to the polarity of its carboxylate whereas Et-NIPOx, acting as a prodrug, exhibited in vitro and in vivo trypanocidal activity in the five tested T. cruzi strains.  相似文献   

12.
Chagas disease, caused by Trypanosoma cruzi, is an important global public health problem which, despite partial efficacy of benznidazole (Bz) in acute phase, urgently needs an effective treatment. Cardiotoxicity is a major safety concern for conduction of more accurate preclinical drug screening platforms. Human induced pluripotent stem cells derived cardiomyocytes (hiPSC-CM) are a reliable model to study genetic and infectious cardiac alterations and may improve drug development. Herein, we introduce hiPSC-CM as a suitable model to study T. cruzi heart infection and to predict the safety and efficacy of anti-T. cruzi drugs.  相似文献   

13.

Background

Current chemotherapy for Chagas disease is unsatisfactory due to its limited efficacy, particularly in the chronic phase, with frequent side effects that can lead to treatment discontinuation. Combined therapy is envisioned as an ideal approach since it may improve treatment efficacy whilst decreasing toxicity and the likelihood of resistance development. We evaluated the efficacy of posaconazole in combination with benznidazole on Trypanosoma cruzi infection in vivo.

Methods and Findings

Benznidazole and posaconazole were administered individually or in combination in an experimental acute murine infection model. Using a rapid treatment protocol for 7 days, the combined treatments were more efficacious in reducing parasitemia levels than the drugs given alone, with the effects most evident in combinations of sub-optimal doses of the drugs. Subsequently, the curative action of these drug combinations was investigated, using the same infection model and 25, 50, 75 or 100 mg/kg/day (mpk) of benznidazole in combination with 5, 10 or 20 mpk of posaconazole, given alone or concomitantly for 20 days. The effects of the combination treatments on parasitological cures were higher than the sum of such effects when the drugs were administered separately at the same doses, indicating synergistic activity. Finally, sequential therapy experiments were carried out with benznidazole or posaconazole over a short interval (10 days), followed by the second drug administered for the same period of time. It was found that the sequence of benznidazole (100 mpk) followed by posaconazole (20 mpk) provided cure rates comparable to those obtained with the full (20 days) treatments with either drug alone, and no cure was observed for the short treatments with drugs given alone.

Conclusions

Our data demonstrate the importance of investigating the potential beneficial effects of combination treatments with marketed compounds, and showed that combinations of benznidazole with posaconazole have a positive interaction in murine models of Chagas disease.  相似文献   

14.
Acidophilic bacterium, Acidiphilium symbioticum H8, is resistant to high levels of several heavy metals, hydrophobic agents, and organic solvents. The ~9.6 kb plasmid pASH8, was purified, digested with HindIII, and sub-cloned in pUC19 at the respective site. Three different fragment size clones were achieved. The clones were completely sequenced and analyzed. The first clone encodes for a single putative open reading frame (ORF), which showed significant homology to several rusticyaninA1 proteins. The second clone encodes for a 43-kDa protein, which has conserved domain homology with several outer envelop TolC proteins. The clone with pASH8 tolC gene can functionally complement an Escherichia coli tolC mutant strain, making it resistant to several toxic hydrophobic agents, earlier for which it was sensitive. The tolC gene was found to be essential for imparting resistance to the clone toward these toxic hydrophobic agents. The third clone encodes for a putative 318-aa AcrA (acriflavine resistance protein A) protein and the clone was resistance to plasmid curing dye acriflavine. The clone also has a truncated ORF, which showed significant homology to cation-efflux pump AcrB. This study is the first to report a multi-drug efflux system to be encoded on a plasmid of any Acidiphilium strain.  相似文献   

15.
Nifurtimox and benznidazole are the only active drugs against Trypanosoma cruzi; however, they have limited efficacy and severe side effects. During primoinfection, T. cruzi infected macrophages mount an antiparasitic response, which the parasite evades through an increase of tumor growth factor β and PGE2 activation as well as decreased iNOS activity. Thus, prostaglandin synthesis inhibition with aspirin might increase macrophage antiparasitic activity and increase nifurtimox and benznidazole effect.Aspirin alone demonstrated a low effect upon macrophage antiparasitic activity. However, isobolographic analysis of the combined effects of aspirin, nifurtimox and benznidazole indicated a synergistic effect on T. cruzi infection of RAW cells, with combinatory indexes of 0.71 and 0.61, respectively.The observed effect of aspirin upon T. cruzi infection was not related with the PGE2 synthesis inhibition. Nevertheless, NO levels were restored by aspirin in T. cruzi-infected RAW cells, contributing to macrophage antiparasitic activity improvement.Thus, the synergy of aspirin with nifurtimox and benznidazole is due to the capability of aspirin to increase antiparasitic activity of macrophages.  相似文献   

16.

Background

New safe and effective treatments for Chagas disease (CD) are urgently needed. Current chemotherapy options for CD have significant limitations, including failure to uniformly achieve parasitological cure or prevent the chronic phase of CD, and safety and tolerability concerns. Fexinidazole, a 2-subsituted 5-nitroimidazole drug candidate rediscovered following extensive compound mining by the Drugs for Neglected Diseases initiative and currently in Phase I clinical study for the treatment of human African trypanosomiasis, was evaluated in experimental models of acute and chronic CD caused by different strains of Trypanosoma cruzi.

Methods and Findings

We investigated the in vivo activity of fexinidazole against T. cruzi, using mice as hosts. The T. cruzi strains used in the study were previously characterized in murine models as susceptible (CL strain), partially resistant (Y strain), and resistant (Colombian and VL-10 strains) to the drugs currently in clinical use, benznidazole and nifurtimox. Our results demonstrated that fexinidazole was effective in suppressing parasitemia and preventing death in infected animals for all strains tested. In addition, assessment of definitive parasite clearance (cure) through parasitological, PCR, and serological methods showed cure rates of 80.0% against CL and Y strains, 88.9% against VL-10 strain, and 77.8% against Colombian strain among animals treated during acute phase, and 70% (VL-10 strain) in those treated in chronic phase. Benznidazole had a similar effect against susceptible and partially resistant T. cruzi strains. Fexinidazole treatment was also shown to reduce myocarditis in all animals infected with VL-10 or Colombian resistant T. cruzi strains, although parasite eradication was not achieved in all treated animals at the tested doses.

Conclusions

Fexinidazole is an effective oral treatment of acute and chronic experimental CD caused by benznidazole-susceptible, partially resistant, and resistant T. cruzi. These findings illustrate the potential of fexinidazole as a drug candidate for the treatment of human CD.  相似文献   

17.
18.
Hundreds of millions of people worldwide are affected by Chagas’ disease caused by Trypanosoma cruzi. Since the current treatment lack efficacy, specificity, and suffers from several side-effects, novel therapeutics are mandatory. Natural products from endophytic fungi have been useful sources of lead compounds. In this study, three lactones isolated from an endophytic strain culture were in silico evaluated for rational guidance of their bioassay screening. All lactones displayed in vitro activity against T. cruzi epimastigote and trypomastigote forms. Notably, the IC50 values of (+)-phomolactone were lower than benznidazole (0.86 vs. 30.78 μM against epimastigotes and 0.41 vs. 4.88 μM against trypomastigotes). Target-based studies suggested that lactones displayed their trypanocidal activities due to T. cruzi glyceraldehyde-3-phosphate dehydrogenase (TcGAPDH) inhibition, and the binding free energy for all three TcGAPDH-lactone complexes suggested that (+)-phomolactone has a lower score value (−3.38), corroborating with IC50 assays. These results highlight the potential of these lactones for further anti-T. cruzi drug development.  相似文献   

19.
Abstract

The protozoan parasite Trypanosoma cruzi is the agent responsible for trypanosomiasis (Chagas disease) in humans and other animals. It has been recently reported that this pathogen encodes for an α-class carbonic anhydrase (CA, EC 4.2.1.1), denominated TcCA, which was shown to be crucial for its life cycle. Inhibition studies of a class of 4-oxoquinazoline containing a benzensulfonamide moiety and their 4-thioxo bioisosteres against the protozoan enzyme TcCA are described here. Most of 4-oxoquinazoline sulfonamides showed nanomolar TcCA inhibition activity with KIs in the same order of magnitude of acetazolamide (AAZ), whereas their thioxo bioisosters showed moderate anti-Trypanosoma CA potency with KIs in the micromolar range. The discovery of compounds incorporating a 4-oxoquinazoline ring as a low-nanomolar TcCA inhibitor is quite promising and it may be useful for developing anti-Trypanosoma agents with a novel mechanism of action compared to the clinically used drugs (such as benznidazole, nifurtimox) for which significant resistance and serious adverse effects due to their high-toxicity appeared.  相似文献   

20.
《Phytomedicine》2015,22(11):969-974
BackgroundThe current treatment of Chagas disease, endemic in Latin America and emerging in several countries, is limited by the frequent side effects and variable efficacy of benznidazole. Natural products are an important source for the search for new drugs.Aim/hypothesisConsidering the great potential of natural products as antiparasitic agents, we investigated the anti-Trypanosoma cruzi activity of a concentrated ethanolic extract of Physalis angulata (EEPA).MethodsCytotoxicity to mammalian cells was determined using mouse peritoneal macrophages. The antiparasitic activity was evaluated against axenic epimastigote and bloodstream trypomastigote forms of T. cruzi, and against amastigote forms using T. cruzi-infected macrophages. Cell death mechanism was determined in trypomastigotes by flow cytometry analysis after annexin V and propidium iodide staining. The efficacy of EEPA was examined in vivo in an acute model of infection by monitoring blood parasitaemia and survival rate 30 days after treatment. The effect against trypomastigotes of EEPA and benznidazole acting in combination was evaluated.ResultsEEPA effectively inhibits the epimastigote growth (IC50 2.9 ± 0.1 µM) and reduces bloodstream trypomastigote viability (EC50 1.7 ± 0.5 µM). It causes parasite cell death by necrosis. EEPA impairs parasite infectivity as well as amastigote development in concentrations noncytotoxic to mammalian cells. In mice acutely-infected with T. cruzi, EEPA reduced the blood parasitaemia in 72.7%. When combined with benznidazole, EEPA showed a synergistic anti-T. cruzi activity, displaying CI values of 0.8 ± 0.07 at EC50 and 0.83 ± 0.1 at EC90.ConclusionEEPA has antiparasitic activity against T. cruzi, causing cell death by necrosis and showing synergistic activity with benznidazole. These findings were reinforced by the observed efficacy of EEPA in reducing parasite load in T. cruzi-mice. Therefore, this represents an important source of antiparasitic natural products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号