首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Energy coupling factor (ECF) transporters are a subgroup of ATP-binding cassette (ABC) transporters involved in the uptake of vitamins and micronutrients in prokaryotes. In contrast to classical ABC importers, ECF transporters do not make use of water-soluble substrate binding proteins or domains but instead employ integral membrane proteins for substrate binding (named S-components). S-components form active translocation complexes with the ECF module, an assembly of two nucleotide-binding domains (NBDs, or EcfA) and a second transmembrane protein. In some cases, the ECF module is dedicated to a single S-component, but in many cases, the ECF module can interact with several different S-components that are unrelated in sequence and bind diverse substrates. The modular organization with exchangeable S-components on a single ECF module allows the transport of chemically different substrates via a common route. The recent determination of the crystal structures of the S-components that recognize thiamin and riboflavin has provided a first clue about the mechanism of S-component exchange. This review describes recent advances and the current views of the mechanism of transport by ECF transporters.  相似文献   

2.
Molecular properties of bacterial multidrug transporters.   总被引:20,自引:0,他引:20  
One of the mechanisms that bacteria utilize to evade the toxic effects of antibiotics is the active extrusion of structurally unrelated drugs from the cell. Both intrinsic and acquired multidrug transporters play an important role in antibiotic resistance of several pathogens, including Neisseria gonorrhoeae, Mycobacterium tuberculosis, Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa, and Vibrio cholerae. Detailed knowledge of the molecular basis of drug recognition and transport by multidrug transport systems is required for the development of new antibiotics that are not extruded or of inhibitors which block the multidrug transporter and allow traditional antibiotics to be effective. This review gives an extensive overview of the currently known multidrug transporters in bacteria. Based on energetics and structural characteristics, the bacterial multidrug transporters can be classified into five distinct families. Functional reconstitution in liposomes of purified multidrug transport proteins from four families revealed that these proteins are capable of mediating the export of structurally unrelated drugs independent of accessory proteins or cytoplasmic components. On the basis of (i) mutations that affect the activity or the substrate specificity of multidrug transporters and (ii) the three-dimensional structure of the drug-binding domain of the regulatory protein BmrR, the substrate-binding site for cationic drugs is predicted to consist of a hydrophobic pocket with a buried negatively charged residue that interacts electrostatically with the positively charged substrate. The aromatic and hydrophobic amino acid residues which form the drug-binding pocket impose restrictions on the shape and size of the substrates. Kinetic analysis of drug transport by multidrug transporters provided evidence that these proteins may contain multiple substrate-binding sites.  相似文献   

3.
Phloem plays a major role in carbohydrate partitioning in the plant. It also controls the redistribution of various metabolites such as amino acids, vitamins, hormones, and ions. The molecular mechanisms responsible for phloem loading and unloading have been particularly well characterised, with the identification of sucrose and polyol transporters. The discovery of the role of phloem in the long-distance translocation of macromolecules, proteins, mRNA and small RNA has modified our understanding of the regulation of the coordination of some developmental and adaptation processes. This review details recent results concerning the transport and long-distance signalling that take place in the phloem.  相似文献   

4.
Members of two transporter families of the ATP-binding cassette (ABC) superfamily use two or even four extracytoplasmic substrate-binding domains (SBDs) for transport. We report on the role of the two SBDs in the translocation cycle of the ABC transporter OpuA from Lactococcus lactis. Heterooligomeric OpuA complexes with only one SBD or one functional and one non-functional SBD (inactivated by covalent linkage of a substrate mimic) have been constructed, and the substrate binding and transport kinetics of the purified transporters, reconstituted in liposomes, have been determined. The data indicate that the two SBDs of OpuA interact in a cooperative manner in the translocation process by stimulating either the docking of the SBDs onto the translocator or the delivery of glycine betaine to the translocator. It appears that one of these initial steps, but not the later steps in translocation or resetting of the system to the initial state, is rate determining for transport. These new insights on the functional role of the extracytoplasmic SBDs are discussed in the light of the current knowledge of substrate-binding-protein-dependent ABC transporters.  相似文献   

5.
Nucleoside transporters (NT) facilitate the movement of nucleosides and nucleobases across cell membranes. NT-mediated transport is vital for the synthesis of nucleic acids in cells that lack de novo purine synthesis. Some nucleosides display biological activity and act as signalling molecules. For example, adenosine exerts a potent action on many physiological processes including vasodilatation, hormone and neurotransmitter release, platelet aggregation, and lipolysis. Therefore, carrier-mediated transport of this nucleoside plays an important role in modulating cell function, because the efficiency of the transport processes determines adenosine availability to its receptors or to metabolizing enzymes. Nucleoside transporters are also key elements in anticancer and antiviral therapy with the use of nucleoside analogues. Mammalian cells possess two major nucleoside transporter families: equilibrative (ENT) and concentrative (CNT) Na(+)-dependent ones. This review characterizes gene loci, substrate specificity, tissue distribution, membrane topology and structure of ENT and CNT proteins. Regulation of nucleoside transporters by various factors is also presented.  相似文献   

6.
The identification of functionally important residues is an important challenge for understanding the molecular mechanisms of proteins. Membrane protein transporters operate two-state allosteric conformational changes using functionally important cooperative residues that mediate long-range communication from the substrate binding site to the translocation pathway. In this study, we identified functionally important cooperative residues of membrane protein transporters by integrating sequence conservation and co-evolutionary information. A newly derived evolutionary feature, the co-evolutionary coupling number, was introduced to measure the connectivity of co-evolving residue pairs and was integrated with the sequence conservation score. We tested this method on three Major Facilitator Superfamily (MFS) transporters, LacY, GlpT, and EmrD. MFS transporters are an important family of membrane protein transporters, which utilize diverse substrates, catalyze different modes of transport using unique combinations of functional residues, and have enough characterized functional residues to validate the performance of our method. We found that the conserved cores of evolutionarily coupled residues are involved in specific substrate recognition and translocation of MFS transporters. Furthermore, a subset of the residues forms an interaction network connecting functional sites in the protein structure. We also confirmed that our method is effective on other membrane protein transporters. Our results provide insight into the location of functional residues important for the molecular mechanisms of membrane protein transporters.  相似文献   

7.
When cells are starved of their substrate, many nutrient transporters are induced. These undergo rapid endocytosis and redirection of their intracellular trafficking when their substrate becomes available again. The discovery that some of these transporters also act as receptors, or transceptors, suggests that at least part of the sophisticated controls governing the trafficking of these proteins has to do with their signaling function rather than with control of transport. In yeast, the general amino acid permease Gap1 mediates signaling to the protein kinase A pathway. Its endocytic internalization and intracellular trafficking are subject to amino acid control. Other nutrient transceptors controlling this signal transduction pathway appear to be subject to similar trafficking regulation. Transporters with complex regulatory control have also been suggested to function as transceptors in other organisms. Hence, precise regulation of intracellular trafficking in nutrient transporters may be related to the need for tight control of nutrient-induced signaling.  相似文献   

8.
Locher KP  Borths E 《FEBS letters》2004,564(3):264-268
ABC transporters are ubiquitous membrane proteins that facilitate unidirectional substrate translocation across the lipid bilayer. Over the past five years, new crystal structures have advanced our understanding of how ABC transporters couple adenosine triphosphate (ATP) hydrolysis to substrate transport. In the following, we will briefly review the results of these structural investigations and outline their mechanistic implications.  相似文献   

9.
The malaria parasite-infected erythrocyte is a multi-compartment structure, incorporating numerous different membrane systems. The movement of nutrients, metabolites and inorganic ions into and out of the intraerythrocytic parasite, as well as between subcellular compartments within the parasite, is mediated by transporters and channels – integral membrane proteins that facilitate the movement of solutes across the membrane bilayer. Proteins of this type also play a key role in antimalarial drug resistance. Genes encoding transporters and channels account for at least 2.5% of the parasite genome. However, ascribing functions and physiological roles to these proteins, and defining their roles in drug resistance, is not straightforward. For any given membrane transport protein, a full understanding of its role(s) in the parasitized erythrocyte requires a knowledge of its subcellular localization and substrate specificity, as well as some knowledge of the effects on the parasite of modifying the sequence and/or level of expression of the gene involved. Here we consider recent work in this area, describe a number of newly identified transport proteins, and summarize the likely subcellular localization and putative substrate specificity of all of the candidate membrane transport proteins identified to date.  相似文献   

10.
The human ATP-binding cassette (ABC) transporters comprise a large family of membrane transport proteins and play a vital role in many cellular processes. The genes provide functions as diverse as peptide transport, cholesterol and sterol transport, bile acid, retinoid, and iron transport. In addition some ABC genes play a role as regulatory elements. Many ABC genes play a role in human genetic diseases, and several are critical drug transport proteins overexpressed in drug resistant cells. Analysis of the gene products allows the genes to be grouped into seven different subfamilies.  相似文献   

11.
Sugar-transport proteins play a crucial role in the cell-to-cell and long-distance distribution of sugars throughout the plant. In the past decade, genes encoding sugar transporters (or carriers) have been identified, functionally expressed in heterologous systems, and studied with respect to their spatial and temporal expression. Higher plants possess two distinct families of sugar carriers: the disaccharide transporters that primarily catalyse sucrose transport and the monosaccharide transporters that mediate the transport of a variable range of monosaccharides. The tissue and cellular expression pattern of the respective genes indicates their specific and sometimes unique physiological tasks. Some play a purely nutritional role and supply sugars to cells for growth and development, whereas others are involved in generating osmotic gradients required to drive mass flow or movement. Intriguingly, some carriers might be involved in signalling. Various levels of control regulate these sugar transporters during plant development and when the normal environment is perturbed. This article focuses on members of the monosaccharide transporter and disaccharide transporter families, providing details about their structure, function and regulation. The tissue and cellular distribution of these sugar transporters suggests that they have interesting physiological roles.  相似文献   

12.
Glutamate and monoamine transporters: new visions of form and function   总被引:4,自引:0,他引:4  
Neurotransmitters are rapidly removed from the extracellular space primarily through the actions of plasma membrane transporters. This uptake process is not only essential in the termination of neurotransmission but also serves to replenish intracellular levels of transmitter for further release. Neurotransmitter transporters couple the inward movement of substrate to the movement of Na(+) down a concentration gradient and, in addition to their transport function, some carriers also display channel-like activities. Five Na(+)/K(+)-dependent glutamate transporter subtypes belong to the solute carrier 1 (SLC1) family and a second family, SLC6, encompasses the Na(+)/Cl(-)-dependent transporters for dopamine, 5-hydroxytryptamine (serotonin), noradrenaline, GABA and glycine. Recent advances, including high-resolution structures from both families, are now providing new insights into the molecular determinants that contribute to substrate translocation and ion channel activities. Other influential studies have explored how cellular regulatory mechanisms modulate transporter function, and how the different functions of the carrier shape the patterns of neurotransmitter signaling. This review focuses on recent studies of glutamate and monoamine transporters as prototypes of the two carrier families.  相似文献   

13.
The lactose transport protein (LacS) of Streptococcus thermophilus belongs to a family of transporters in which putative alpha-helices II and IV have been implicated in cation binding and the coupled transport of the substrate and the cation. Here, the analysis of site-directed mutants shows that a positive and negative charge at positions 64 and 71 in helix II are essential for transport, but not for lactose binding. The conservation of charge/side-chain properties is less critical for Glu-67 and Ile-70 in helix II, and Asp-133 and Lys-139 in helix IV, but these residues are important for the coupled transport of lactose together with a proton. The analysis of second-site suppressor mutants indicates an ion pair exists between helices II and IV, and thus a close approximation of these helices can be made. The second-site suppressor analysis also suggests ion pairing between helix II and the intracellular loops 6-7 and 10-11. Because the C-terminal region of the transmembrane domain, especially helix XI and loop 10-11, is important for substrate binding in this family of proteins, we propose that sugar and proton binding and translocation are performed by the joint action of these regions in the protein. Indeed, substrate protection of maleimide labeling of single cysteine mutants confirms that alpha-helices II and IV are directly interacting or at least conformationally involved in sugar binding and/or translocation. On the basis of new and published data, we reason that the helices II, IV, VII, X, and XI and the intracellular loops 6-7 and 10-11 are in close proximity and form the binding sites and/or the translocation pathway in the transporters of the galactosides-pentosides-hexuronides family.  相似文献   

14.
The Amt/Mep/Rh family of ammonium transport proteins   总被引:2,自引:0,他引:2  
The Amt/Mep/Rh family of integral membrane proteins comprises ammonium transporters of bacteria, archaea and eukarya, as well as the Rhesus proteins found in animals. They play a central role in the uptake of reduced nitrogen for biosynthetic purposes, in energy metabolism, or in renal excretion. Recent structural information on two prokaryotic Amt proteins has significantly contributed to our understanding of this class, but basic questions concerning the transport mechanism and the nature of the transported substrate, NH3 or [NH4(+)], remain to be answered. Here we review functional and structural studies on Amt proteins and discuss the bioenergetic issues raised by the various mechanistic proposals present in the literature.  相似文献   

15.
EAAT glutamate transporters do not only function as secondary-active glutamate transporters but also as anion channels. EAAT anion channel activity depends on transport substrates. For most isoforms, it is negligible without external Na(+) and increased by external glutamate. We here investigated gating of EAAT4 anion channels with various cations and amino acid substrates using patch clamp experiments on a mammalian cell line. We demonstrate that Li(+) can substitute for Na(+) in supporting substrate-activated anion currents, albeit with changed voltage dependence. Anion currents were recorded in glutamate, aspartate, and cysteine, and distinct time and voltage dependences were observed. For each substrate, gating was different in external Na(+) or Li(+). All features of voltage-dependent and substrate-specific anion channel gating can be described by a simplified nine-state model of the transport cycle in which only amino acid substrate-bound states assume high anion channel open probabilities. The kinetic scheme suggests that the substrate dependence of channel gating is exclusively caused by differences in substrate association and translocation. Moreover, the voltage dependence of anion channel gating arises predominantly from electrogenic cation binding and membrane translocation of the transporter. We conclude that all voltage- and substrate-dependent conformational changes of the EAAT4 anion channel are linked to transitions within the transport cycle.  相似文献   

16.
FpvA is the primary outer membrane transporter required for iron acquisition via the siderophore pyoverdine (Pvd) in Pseudomonas aeruginosa. FpvA, like other ferrisiderophore transporters, consists of a membrane-spanning β-barrel occluded by a plug domain. The β-strands of the barrel are connected by large extracellular loops and periplasmic turns. Like some other TonB-dependent transporters, FpvA has a periplasmic domain involved in a signalling cascade that regulates expression of genes required for ferrisiderophore transport. Here, the structures of FpvA in different loading states are analysed in light of mutagenesis data. This analysis highlights the roles of different protein domains in Pvd-Fe uptake and the signalling cascade and reveals a strong correlation between Pvd-Fe transport and activation of the signalling cascade. It is likely that conclusions drawn for FpvA will be relevant to other TonB-dependent ferrisiderophore transport and signalling proteins.  相似文献   

17.
Membrane transport proteins are integral membrane proteins and considered as potential drug targets. Activity assay of transport proteins is essential for developing drugs to target these proteins. Major issues related to activity assessment of transport proteins include availability of transporters, transport activity of transporters, and interactions between ligands and transporters. Researchers need to consider the physiological status of proteins (bound in lipid membranes or purified), availability and specificity of substrates, and the purpose of the activity assay (screening, identifying, or comparing substrates and inhibitors) before choosing appropriate assay strategies and techniques. Transport proteins bound in vesicular membranes can be assayed for transporting substrate across membranes by means of uptake assay or entrance counterflow assay. Alternatively, transport proteins can be assayed for interactions with ligands by using techniques such as isothermal titration calorimetry, nuclear magnetic resonance spectroscopy, or surface plasmon resonance. Other methods and techniques such as fluorometry, scintillation proximity assay, electrophysiologi-cal assay, or stopped-flow assay could also be used for activity assay of transport proteins. In this paper the major strategies and techniques for activity assessment of membrane transport proteins are reviewed.  相似文献   

18.
The phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) represents hitherto the only example of group translocation transport systems. PTS transporters are exclusively found in bacteria and can be grouped on the basis of sequence and structure into six classes. We have analyzed the evolution of mannose-class PTS transporters. These transporters have a limited distribution among bacteria being mostly harbored by species associated to animals. The results obtained indicate that these genes have undergone a complex evolutionary history, including extensive horizontal gene transfer events, duplications, and nonorthologous displacements. The phylogenetic analysis revealed an early diversification to specialize in different transport capabilities, but these events have also occurred relatively recently. In addition, these transporters can be further divided into seven groups and this division correlates with their transport capabilities. Finally, the consideration of the genomic context allowed us to propose putative functional roles for some uncharacterized PTS transporters. The functional role and distribution of mannose-class PTS transporters suggest that their expansion may have played a significant role in the establishment of symbiotic relationships between animals and some bacteria.  相似文献   

19.
The removal of transmembrane proteins from the plasma membrane via endocytosis has emerged as powerful strategy in the regulation of receptor signalling and molecule transport. In the last decade, IRON‐REGULATED TRANSPORTER1 (IRT1) has been established as one of the key plant model proteins for studying endomembrane trafficking. The use of IRT1 and additional other metal transporters has uncovered novel factors involved in plant endocytosis and facilitated a better understanding of the role of endocytosis in the fine balancing of plant metal homoeostasis. In this review, we outline the specifics of plant endocytosis compared to what is known in yeast and mammals, and based on several examples, we demonstrate how studying metal transport has contributed to extending our knowledge of endocytic trafficking by shedding light on novel regulatory mechanisms and factors.  相似文献   

20.
Based on possible unity of the evolutionary origin of some prokaryotic proteins with eukaryotic ion channels and receptors, this review analyzes interconnections between receptive, transport, and channel functions of integral proteins. This interconnection can be considered the best by the example of neurotransmitter transporters. Their role in chemical synapses and their possible participation in phenomena of synaptic plasticity are reviewed. There are discussed mechanisms of transporter functioning, such as the allosteric model and the model of activity by the principle of channel, as well as data about coupling by the transporters of reception of substrate and its transport with the substrate-activated channel of Cl-conductance and the ion leakage. The importance of the latter aspects of the neurotransmitter transporter functioning is usually underestimated in studying neuronal and glial electrogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号