首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infection of Sulfolobus islandicus REY15A with mixtures of different Sulfolobus viruses, including STSV2, did not induce spacer acquisition by the host CRISPR immune system. However, coinfection with the tailed fusiform viruses SMV1 and STSV2 generated hyperactive spacer acquisition in both CRISPR loci, exclusively from STSV2, with the resultant loss of STSV2 but not SMV1. SMV1 was shown to activate adaptation while itself being resistant to CRISPR‐mediated adaptation and DNA interference. Exceptionally, a single clone S‐1 isolated from an SMV1 + STSV2‐infected culture, that carried STSV2‐specific spacers and had lost STSV2 but not SMV1, acquired spacers from SMV1. This effect was also reproducible on reinfecting wild‐type host cells with a variant SMV1 isolated from the S‐1 culture. The SMV1 variant lacked a virion protein ORF114 that was shown to bind DNA. This study also provided evidence for: (i) limits on the maximum sizes of CRISPR loci; (ii) spacer uptake strongly retarding growth of infected cultures; (iii) protospacer selection being essentially random and non‐directional, and (iv) the reversible uptake of spacers from STSV2 and SMV1. A hypothesis is presented to explain the interactive conflicts between SMV1 and the host CRISPR immune system.  相似文献   

2.
3.
We have determined the apparent and actual spontaneous mutation frequencies and rates for different species and strains of the thermoacidophilic crenarchaeote Sulfolobus. The proportion of mutations caused by insertion sequences has also been analyzed. Mutation frequencies for S. islandicus (0.08–0.6 mutations per cell division and 107 cells) were below those determined for S. solfataricus and comparable to or lower than those for S. acidocaldarius. The proportion of insertion sequence mutations for the S. islandicus strains REN1H1 (9 out of 230) and HVE10/4 (0 out of 24) was found to be considerably lower than in S. solfataricus P1 and P2 and also low in comparison to other S. islandicus strains. Mutants defective in either the pyrEF genes or the lacS gene have been isolated. Their growth phenotype on selective and non-selective medium was examined and the inactivating mutations in either of the genes were determined. In addition the reversion frequencies for these mutants were measured and found to be in the range of <0.6–1.5 mutations per cell division and 108 cells. However, when being subjected to electroporation as a transformation procedure, increased reversion was observed.  相似文献   

4.
The Sulfolobus spindle virus, SSV2, encodes a tyrosine integrase which furthers provirus formation in host chromosomes. Consistently with the prediction made during sequence analysis, integration was found to occur in the downstream half of the tRNAGly (CCC) gene. In this paper we report the findings of a comparative study of SSV2 physiology in the natural host, Sulfolobus islandicus REY15/4, versus the foreign host, Sulfolobus solfataricus, and provide evidence of differently regulated SSV2 life cycles in the two hosts. In fact, whereas a significant induction of SSV2 replication takes place during the growth of the natural host REY15/4, the cellular content of SSV2 DNA remains fairly low throughout the incubation of the foreign host. The accumulation of episomal DNA in the former case cannot be traced to decreased packaging activity because of a simultaneous increase in the virus titre in the medium. In addition, the interaction between SSV2 and its natural host is characterized by the concurrence of host growth inhibition and the induction of viral DNA replication. When this virus–host interaction was investigated using S. islandicus REY15A, a strain which is closely related to the natural host, it was found that the SSV2 replication process was induced in the same way as in the natural host REY15/4.  相似文献   

5.
Intracellular pathogens need to establish specialised niches for survival and proliferation in host cells. The enteropathogen Salmonella enterica accomplishes this by extensive reorganisation of the host endosomal system deploying the SPI2‐encoded type III secretion system (SPI2‐T3SS). Fusion events of endosomal compartments with the Salmonella‐containing vacuole (SCV) form elaborate membrane networks within host cells enabling intracellular nutrition. However, which host compartments exactly are involved in this process and how the integrity of Salmonella‐modified membranes is accomplished are not fully resolved. An RNA interference knockdown screen of host factors involved in cellular logistics identified the ESCRT (endosomal sorting complex required for transport) system as important for proper formation and integrity of the SCV in infected epithelial cells. We demonstrate that subunits of the ESCRT‐III complex are specifically recruited to the SCV and membrane network. To investigate the role of ESCRT‐III for the intracellular lifestyle of Salmonella, a CHMP3 knockout cell line was generated. Infected CHMP3 knockout cells formed amorphous, bulky SCV. Salmonella within these amorphous SCV were in contact with host cell cytosol, and the attenuation of an SPI2‐T3SS‐deficient mutant strain was partially abrogated. ESCRT‐dependent endolysosomal repair mechanisms have recently been described for other intracellular pathogens, and we hypothesise that minor damages of the SCV during bacterial proliferation are repaired by the action of ESCRT‐III recruitment in Salmonella‐infected host cells.  相似文献   

6.
Iron availability is a key determinant of virulence in the pathogenic fungus Cryptococcus neoformans. Previous work revealed that the ESCRT (endosomal sorting complex required for transport) protein Vps23 functions in iron acquisition, capsule formation and virulence. Here, we further characterized the ESCRT machinery to demonstrate that defects in the ESCRT‐II and III complexes caused reduced capsule attachment, impaired growth on haem and resistance to non‐iron metalloprotoporphyrins. The ESCRT mutants shared several phenotypes with a mutant lacking the pH‐response regulator Rim101, and in other fungi, the ESCRT machinery is known to activate Rim101 via proteolytic cleavage. We therefore expressed a truncated and activated version of Rim101 in the ESCRT mutants and found that this allele restored capsule formation but not growth on haem, thus suggesting a Rim101‐independent contribution to haem uptake. We also demonstrated that the ESCRT machinery acts downstream of the cAMP/protein kinase A pathway to influence capsule elaboration. Defects in the ESCRT components also attenuated virulence in macrophage survival assays and a mouse model of cryptococcosis to a greater extent than reported for loss of Rim101. Overall, these results indicate that the ESCRT complexes function in capsule elaboration, haem uptake and virulence via Rim101‐dependent and independent mechanisms.  相似文献   

7.
8.
The sequential action of five distinct endosomal‐sorting complex required for transport (ESCRT) complexes is required for the lysosomal downregulation of cell surface receptors through the multivesicular body (MVB) pathway. On endosomes, the assembly of ESCRT‐III is a highly ordered process. We show that the length of ESCRT‐III (Snf7) oligomers controls the size of MVB vesicles and addresses how ESCRT‐II regulates ESCRT‐III assembly. The first step of ESCRT‐III assembly is mediated by Vps20, which nucleates Snf7/Vps32 oligomerization, and serves as the link to ESCRT‐II. The ESCRT‐II subunit Vps25 induces an essential conformational switch that converts inactive monomeric Vps20 into the active nucleator for Snf7 oligomerization. Each ESCRT‐II complex contains two Vps25 molecules (arms) that generate a characteristic Y‐shaped structure. Mutant ‘one‐armed’ ESCRT‐II complexes with a single Vps25 arm are sufficient to nucleate Snf7 oligomerization. However, these oligomers cannot execute ESCRT‐III function. Both Vps25 arms provide essential geometry for the assembly of a functional ESCRT‐III complex. We propose that ESCRT‐II serves as a scaffold that nucleates the assembly of two Snf7 oligomers, which together are required for cargo sequestration and vesicle formation during MVB sorting.  相似文献   

9.
Characterizing the molecular interactions of viruses in natural microbial populations offers insights into virus–host dynamics in complex ecosystems. We identify the resistance of Sulfolobus islandicus to Sulfolobus spindle-shaped virus (SSV9) conferred by chromosomal deletions of pilin genes, pilA1 and pilA2 that are individually able to complement resistance. Mutants with deletions of both pilA1 and pilA2 or the prepilin peptidase, PibD, show the reduction in the number of pilins observed in TEM and reduced surface adherence but still adsorb SSV9. The proteinaceous outer S-layer proteins, SlaA and SlaB, are not required for adsorption nor infection demonstrating that the S-layer is not the primary receptor for SSV9 surface binding. Strains lacking both pilins are resistant to a broad panel of SSVs as well as a panel of unrelated S. islandicus rod-shaped viruses (SIRVs). Unlike SSV9, we show that pilA1 or pilA2 is required for SIRV8 adsorption. In sequenced Sulfolobus strains from around the globe, one copy of each pilA1 and pilA2 is maintained and show codon-level diversification, demonstrating their importance in nature. By characterizing the molecular interactions at the initiation of infection between S. islandicus and two different types of viruses we hope to increase the understanding of virus–host interactions in the archaeal domain.  相似文献   

10.
The crenarchaea Sulfolobus acidocaldarius, S. solfataricus and S. tokodaii, release membrane vesicles into the medium. These membrane vesicles consist of tetraether lipids and are coated with an S-layer. A proteomic analysis reveals the presence of proteins homologous to subunits of the eukaryotic endosomal sorting complex required for transport (ESCRT). Immunodetection of one of these homologs suggest a cell surface localization in intact cells. These data suggest that the membrane vesicles in Sulfolobus sp. emerge from a specific budding process with similarity to the endosomal sorting pathway.  相似文献   

11.
The flagellated protist Tritrichomonas foetus is a parasite that causes bovine trichomonosis, a major sexually transmitted disease in cattle. Cell division has been described as a key player in controlling cell survival in other cells, including parasites but there is no information on the regulation of this process in T. foetus. The regulation of cytokinetic abscission, the final stage of cell division, is mediated by members of the ESCRT (endosomal sorting complex required for transport) machinery. VPS32 is a subunit within the ESCRTIII complex and here, we report that TfVPS32 is localized on cytoplasmic vesicles and a redistribution of the protein to the midbody is observed during the cellular division. In concordance with its localization, deletion of TfVPS32 C‐terminal alpha helices (α5 helix and/or α4‐5 helix) leads to abnormal T. foetus growth, an increase in the percentage of multinucleated parasites and cell cycle arrest at G2/M phase. Together, these results indicate a role of this protein in controlling normal cell division.  相似文献   

12.
The E ndosomal S orting C omplex R equired for T ransport machinery consists of four protein complexes (ESCRT 0‐IV) and the post ESCRT ATPase Vps4. ESCRT mediates cargo delivery for lysosomal degradation via formation of multivesicular bodies. Trypanosoma brucei contains orthologues of ESCRT I‐III and Vps4. Trypanosomes also have an ubiquitinylated invariant surface glycoprotein (ISG65) that is delivered to the lysosome by ESCRT, however, we previously implicated TbVps4 in rescue and recycling of ISG65. Here we use conditional silencing to investigate the role of TbVps24, a phosphoinositide‐binding ESCRT III component, on protein trafficking. TbVps24 localises to the TbRab7+ late endosome, and binds PI(3,5)P2, the product of the TbFab1 kinase, both of which also localise to late endosomes. TbVps24 silencing is lethal, and negatively affects biosynthetic trafficking of the lysosomal markers p67 and TbCathepsin L. However, the major phenotype of silencing is accelerated degradation and depletion of the surface pool of ISG65. Thus, TbVps24 silencing phenocopies that of TbVps4 in regard to ISG65 trafficking. This presents a paradox since we have previously found that depletion of TbFab1 completely blocks ISG65 turnover. We propose a model in which late ESCRT components operate at two sites, one PI(3,5)P2‐dependent (degradation) and one PI(3,5)P2‐independent (recycling), to regulate ISG65 homeostasis.  相似文献   

13.
The pSSVx genetic element from Sulfolobus islandicus REY15/4 is a hybrid between a plasmid and a fusellovirus, able to be maintained in non-integrative form and to spread when the helper SSV2 virus is present in the cells. In this work, the satellite virus was engineered to obtain an Escherichia coliSulfolobus solfataricus shuttle vector for gene transfer and expression in S.solfataricus by fusing site-specifically the pSSVx chromosome with an E.coli plasmid replicon and the ampicillin resistance gene. The pSSVx-based vector was proven functional like the parental virus, namely it was able to spread efficiently through infected S.solfataricus cells. Moreover, the hybrid plasmid stably transformed S.solfataricus and propagated with no rearrangement, recombination or integration into the host chromosome. The high copy number of the artificial genetic element was found comparable with that calculated for the wild-type pSSVx in the new host cells, with no need of genetic markers for vector maintenance in the cells and for transfomant enrichment.

The newly constructed vector was also shown to be an efficient cloning vehicle for the expression of passenger genes in S.solfataricus. In fact, a derivative plasmid carrying an expression cassette of the lacS gene encoding the β-glycosidase from S.solfataricus under the control of the Sulfolobus chaperonine (thermosome tf55) heat shock promoter was also able to drive the expression of a functional enzyme. Complementation of the β-galactosidase deficiency in a deletion mutant strain of S.solfataricus demonstrated that lacS gene was an efficient marker for selection of single transformants on solid minimal lactose medium.

  相似文献   

14.
A newly isolated single-tailed fusiform virus, Sulfolobus tengchongensis spindle-shaped virus STSV2, from Hamazui, China, is characterised. It contains a double-stranded modified DNA genome of 76,107 bp and is enveloped by a lipid membrane structure. Virions exhibit a single coat protein that forms oligomers when isolated. STSV2 is related to the single-tailed fusiform virus STSV1 and, more distantly, to the two-tailed bicaudavirus ATV. The virus can be stably cultured over long periods in laboratory strains of Sulfolobus and no evidence was found for cell lysis under different stress conditions. Therefore, it constitutes an excellent model virus for archaeal virus–host studies.  相似文献   

15.
【目的】开发可用于在极端嗜热嗜酸模式泉古菌冰岛硫化叶菌(Sulfolobus islandicus)中进行高效表达的eCGP123(enhanced consensus green protein variant 123)荧光蛋白,并用作S.islandicus的细胞内蛋白定位工具。【方法】绿色荧光蛋白突变体eCGP123具有极高的热稳定性、耐酸性和可逆的荧光特性等。本研究主要对eCGP123的基因根据S.islandicus密码子偏好性进行优化与合成,在大肠杆菌(Escherichia coli)中表达并研究其蛋白性质;通过在eCGP123的C末端分别融合具有不同细胞内定位的蛋白(包括E.coli来源的Fts Z和S.islandicus来源的Ups E、PCNA1和SiRe_1200等),构建eCGP123及其融合蛋白的表达菌株,用激光共聚焦显微镜分析eCGP123及其融合蛋白在E.coli和S.islandicus活细胞中的亚细胞定位。【结果】我们确认了在E.coli中表达并纯化密码子优化后的e CGP123具有与野生型绿色荧光蛋白相同的吸光值和较高的热稳定性。细胞学分析显示细胞分裂相关蛋白FtsZ和Si Re_1200分别主要定位于E.coli和S.islandicus分裂细胞的中间;鞭毛组分蛋白Ups E呈点状均匀分布,可能定位于细胞膜上;DNA复制滑动夹亚基PCNA1呈区域性点状分布,暗示了DNA复制区域的位置。蛋白的亚细胞定位与预期结果基本吻合。【结论】绿色荧光蛋白e CGP123可以作为报告蛋白,应用于S.islandicus细胞的蛋白定位分析中,可作为该模式菌株中功能基因研究的重要工具,但需要进一步优化条件。  相似文献   

16.
Background information. Within the endocytic pathway, the ESCRT (endosomal sorting complex required for transport) machinery is essential for the biogenesis of MVBs (multivesicular bodies). In yeast, ESCRTs are recruited at the endosomal membrane and are involved in cargo sorting into intralumenal vesicles of the MVBs. Results. In the present study, we characterize the ESCRT‐III protein CeVPS‐32 (Caenorhabditis elegans vacuolar protein sorting 32) and its interactions with CeVPS‐27, CeVPS‐23 and CeVPS‐4. In contrast with other CevpsE (class E vps) genes, depletion of Cevps‐32 is embryonic lethal with severe defects in the remodelling of epithelial cell shape during organogenesis. Furthermore, Cevps‐32 animals display an accumulation of enlarged early endosomes in epithelial cells and an accumulation of autophagosomes. The CeVPS‐32 protein is enriched in epithelial tissues and in residual bodies during spermatid maturation. We show that CeVPS‐32 and CeVPS‐27/Hrs (hepatocyte‐growth‐factor‐regulated tyrosine kinase substrate) are enriched in distinct subdomains at the endosomal membrane. CeVPS‐27‐positive subdomains are also enriched for the ESCRT‐I protein CeVPS‐23/TSG101 (tumour susceptibility gene 101). The formation of CeVPS‐27 subdomains is not affected by the depletion of CeVPS‐23, CeVPS‐32 or the ATPase CeVPS‐4. Conclusion. Our results suggest that the formation of membrane subdomains is essential for the maturation of endosomes.  相似文献   

17.
Lipid droplets (LDs) are cytosolic fat storage organelles that play roles in lipid metabolism, trafficking and signaling. Breakdown of LDs in Saccharomyces cerevisiae is mainly achieved by lipolysis and lipophagy. In this study, we found that the endosomal sorting complex required for transport (ESCRT) in S. cerevisiae negatively regulated the turnover of a LD marker, Erg6, under both simplified glucose restriction (GR) and acute glucose restriction (AGR) conditions by monitoring the localization and degradation of Erg6. Loss of Vps27, Snf7 or Vps4, representative subunits of the ESCRT machinery, facilitated the delivery of Erg6‐GFP to vacuoles and its degradation depending on the lipophagy protein Atg15 under simplified GR. Additionally, the lipolysis proteins Tgl3 and Tgl4 were also involved in the enhanced vacuolar localization and degradation of Erg6‐GFP in vps4Δ cells. Furthermore, we found that Atg14, which is required for the formation of putatively liquid‐ordered (Lo) membrane domains on the vacuole that act as preferential internalization sites for LDs, abundantly localized to vacuolar membranes in ESCRT mutants. Most importantly, the depletion or overexpression of Atg14 correspondingly abolished or promoted the observed Erg6 degradation in ESCRT mutant cells. We propose that Atg14 together with other proteins promotes Erg6 degradation in ESCRT mutant cells under specific glucose restriction conditions. These results shed new light on the regulation of ESCRT on LD turnover.  相似文献   

18.
Mycobacteria lack several of the components that are essential in model systems as Escherichia coli or Bacillus subtilis for the formation of the divisome, a ring‐like structure assembling at the division site to initiate bacterial cytokinesis. Divisome assembly depends on the correct placement of the FtsZ protein into a structure called the Z ring. Notably, early division proteins that assist in the localisation of the Z ring to the cytoplasmic membrane and modulate its structure are missing in the so far known mycobacterial cell division machinery. To find mycobacterium‐relevant components of the divisome that might act at the level of FtsZ, a yeast two‐hybrid screening was performed with FtsZ from Mycobacterium tuberculosis. We identified the SepF homolog as a new interaction partner of mycobacterial FtsZ. Depending on the presence of FtsZ, SepF‐GFP fusions localised in ring‐like structures at potential division sites. Alteration of SepF levels in Mycobacterium smegmatis led to filamentous cells, indicating a division defect. Depletion of SepF resulted in a complete block of division. The sepF gene is highly conserved in the M. tuberculosis complex members. We therefore propose that SepF is an essential part of the core division machinery in the genus Mycobacterium.  相似文献   

19.
Iron redox transformations by five representative Sulfolobus strains (S. metallicus Kra23, S. tokodaii 7, S. acidocaldarius 98-3, S. solfataricus P1, S. shibatae B12) were studied to clarify the general trend of Fe metabolism across different species of the genus Sulfolobus. Negligible to major Fe(II) oxidation was detected in cell suspensions of the strains. Fe(III)-reducing ability was differently expressed in each strain with dependence on the oxygen level and growth status; growth-uncoupled cell suspensions of all strains reduced Fe(III) under either anaerobic or microaerobic conditions, or under both conditions. A linear correlation between cell growth and Fe(III) reduction was also found in S. tokodaii 7, S. solfataricus P1, and S. shibatae B12. In addition to Fe redox behaviors, the strains were also tested for reduction of highly toxic Cr(VI) to less toxic and soluble Cr(III), as an application possibility; the trend in degree of Cr(V) reduction did not necessarily correspond to that of Fe(III) reduction, suggesting the involvement of different reduction mechanisms.  相似文献   

20.
Local populations of Sulfolobus islandicus diverge genetically with geographical separation, and this has been attributed to restricted transfer of propagules imposed by the unfavorable spatial distribution of acidic geothermal habitat. We tested the generality of genetic divergence with distance in Sulfolobus species by analyzing genomes of Sulfolobus acidocaldarius drawn from three populations separated by more than 8000 km. In sharp contrast to S. islandicus, the geographically diverse S. acidocaldarius genomes proved to be nearly identical. We could not link the difference in genome conservation between the two species to a corresponding difference in genome stability or ecological factors affecting propagule dispersal. The results provide the first evidence that genetic isolation of local populations does not result primarily from properties intrinsic to Sulfolobus and the severe discontinuity of its geothermal habitat, but varies with species, and thus may reflect biotic interactions that act after propagule dispersal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号