首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At 22°C the bioluminescence decay kinetics in the in vitro reaction catalysed by Vibrio harveyi luciferase in the presence of different aldehydes–-nonanal, decanal, tridecanal and tetradecanal did not follow the simple exponential pattern and could be fitted to a two-exponential process. One more principal distinction from the first-order kinetics is the dependence of the parameters on aldehyde concentration. The complex bioluminescence decay kinetics are interpreted in terms of a scheme, where bacterial luciferase is able to perform multiple turnovers using different flavin species to produce light. The initial phase of the bioluminescent reaction appears to proceed mainly with fully reduced flavin as the substrate while the final one results from the involvement of flavin semiquinone in the catalytic cycle.  相似文献   

2.
Bioluminescence is reported in members of 18 dinoflagellate genera. Species of dinoflagellates are known to have different bioluminescent signatures, making it difficult to assess the presence of particular species in the water column using optical tools, particularly when bioluminescent populations are in nonbloom conditions. A “universal” oligonucleotide primer set, along with species and genus‐specific primers specific to the luciferase gene were developed for the detection of bioluminescent dinoflagellates. These primers amplified luciferase sequences from bioluminescent dinoflagellate cultures and from environmental samples containing bioluminescent dinoflagellate populations. Novel luciferase sequences were obtained for strains of Alexandrium cf. catenella (Whedon et Kof.) Balech and Alexandrium fundyense Balech, and also from a strain of Gonyaulax spinifera (Clap. et Whitting) Diesing, which produces bioluminescence undetectable to the naked eye. The phylogeny of partial luciferase sequences revealed five significant clades of the dinoflagellate luciferase gene, suggesting divergence among some species and providing clues on their molecular evolution. We propose that the primers developed in this study will allow further detection of low‐light‐emitting bioluminescent dinoflagellate species and will have applications as robust indicators of dinoflagellate bioluminescence in natural water samples.  相似文献   

3.
Bioluminescence is a rapid and cost-efficient optical imaging technology that allows the detection of bacteria in real-time during disease development. Here, we report a novel strategy to generate a wide range of bioluminescent group A streptococcus (GAS) strains by using a toxin–antitoxin-stabilized plasmid. The bacterial luciferin–luciferase operon (lux) or the firefly luciferase gene (ffluc) was introduced into GAS via a stabilized plasmid. The FFluc reporter gave significantly stronger bioluminescent signals than the Lux reporter, and was generally more stable. Plasmid-based luciferase reporters could easily be introduced into a variety of GAS strains and the signals correlated linearly with viable cell counts. Co-expression of the streptococcal ω–ε–ζ toxin–antitoxin operon provided segregational stability in the absence of antibiotics for at least 17 passages in vitro and up to 7 days in a mouse infection model. In addition, genome-integrated reporter constructs were also generated by site-specific recombination, but were found to be technically more challenging. The quick and efficient generation of various M-type GAS strains expressing plasmid-based luciferase reporters with comparable and quantifiable bioluminescence signals allows for comparative analysis of different GAS strains in vitro and in vivo.  相似文献   

4.
Several groups of marine fishes and squids form mutualistic bioluminescent symbioses with luminous bacteria. The dependence of the animal on its symbiont for light production, the animal's specialized anatomical adaptations for harboring bacteria and controlling light emission, and the host family bacterial species specificity characteristic of these associations suggest that bioluminescent symbioses are tightly coupled associations that might involve coevolutionary interactions. Consistent with this possibility, evidence of parallel cladogenesis has been reported for squid–bacterial associations. However, genetic adaptations in the bacteria necessary for and specific to symbiosis have not been identified, and unlike obligate endosymbiotic associations in which the bacteria are transferred vertically, bacterially bioluminescent hosts acquire their light‐organ symbionts from the environment with each new host generation. These contrasting observations led us to test the hypotheses of species specificity and codivergence in bioluminescent symbioses, using an extensive sampling of naturally formed associations. Thirty‐five species of fish in seven teleost families (Chlorophthalmidae, Macrouridae, Moridae, Trachichthyidae, Monocentridae, Acropomatidae, Leiognathidae) and their light‐organ bacteria were examined. Phylogenetic analysis of a taxonomically broad sampling of associations was based on mitochondrial 16S rRNA and cytochrome oxidase I gene sequences for the fish and on recA, gyrB and luxA sequences for bacteria isolated from the light organs of these specimens. In a fine‐scale test focused on Leiognathidae, phylogenetic analysis was based also on histone H3 subunit and 28S rRNA gene sequences for the fish and on gyrB, luxA, luxB, luxF and luxE sequences for the bacteria. Deep divergences were revealed among the fishes, and clear resolution was obtained between clades of the bacteria. In several associations, bacterial species identities contradicted strict host family bacterial species specificity. Furthermore, the fish and bacterial phylogenies exhibited no meaningful topological congruence; evolutionary divergence of host fishes was not matched by a similar pattern of diversification in the symbiotic bacteria. Re‐analysis of data reported for squids and their luminous bacteria also revealed no convincing evidence of codivergence. These results refute the hypothesis of strict host family bacterial species specificity and the hypothesis of codivergence in bioluminescent symbioses. © The Willi Hennig Society 2007.  相似文献   

5.
We report a first method for using M13 bacteriophage as a multifunctional scaffold for optically imaging bacterial infections in vivo. We demonstrate that M13 virus conjugated with hundreds of dye molecules (M13‐Dye) can target and distinguish pathogenic infections of F‐ pili expressing and F ‐negative strains of E. coli. Further, in order to tune this M13‐Dye complex suitable for targeting other strains of bacteria, we have used a 1‐step reaction for creating an anti‐bacterial antibody ‐M13‐Dye probe. As an example, we show anti‐S. aureus ‐M13‐Dye able to target and image infections of S. aureus in living hosts, with a 3.7× increase in fluorescence over background. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Trimethylamine (TMA) and trimethylamine N‐oxide (TMAO) are widespread in the ocean and are important nitrogen source for bacteria. TMA monooxygenase (Tmm), a bacterial flavin‐containing monooxygenase (FMO), is found widespread in marine bacteria and is responsible for converting TMA to TMAO. However, the molecular mechanism of TMA oxygenation by Tmm has not been explained. Here, we determined the crystal structures of two reaction intermediates of a marine bacterial Tmm (RnTmm) and elucidated the catalytic mechanism of TMA oxidation by RnTmm. The catalytic process of Tmm consists of a reductive half‐reaction and an oxidative half‐reaction. In the reductive half‐reaction, FAD is reduced and a C4a‐hydroperoxyflavin intermediate forms. In the oxidative half‐reaction, this intermediate attracts TMA through electronic interactions. After TMA binding, NADP+ bends and interacts with D317, shutting off the entrance to create a protected micro‐environment for catalysis and exposing C4a‐hydroperoxyflavin to TMA for oxidation. Sequence analysis suggests that the proposed catalytic mechanism is common for bacterial Tmms. These findings reveal the catalytic process of TMA oxidation by marine bacterial Tmm and first show that NADP+ undergoes a conformational change in the oxidative half‐reaction of FMOs.  相似文献   

7.
《Luminescence》2003,18(4):207-213
In this study we describe an ef?cient stable genetic transformation of the phytopathogenic bacterium Erwinia amylovora using a recombinant expression vector encoding the ?re?y luciferase gene of Photinus pyralis, which is further controlled by IPTG‐inducible promoter. Stably transformed E. amylovora cells maintain the same infectivity as the wild‐type strain and, after induction with IPTG, produce luciferase. Luminescence produced by the action of luciferase on an exogenous substrate was easily detectable by a simple and rapid bioluminescent assay (BL). The transformed E. amylovora strain maintains the same high emission level, even after passage in pears, until about 15 days post‐infection. Our ?ndings therefore show that the luciferase assay can be conveniently used to follow the bacterial movement in plant tissue and its dissemination in controlled environments.  相似文献   

8.
Interpretation of the constantly expanding body of genomic information requires that the function of each gene be established. Here we report the genomic analysis and structural modelling of a previously uncharacterized redox‐metabolism protein UrdA (SO_4620) of Shewanella oneidensis MR‐1, which led to a discovery of the novel enzymatic activity, urocanate reductase. Further cloning and expression of urdA, as well as purification and biochemical study of the gene's product UrdA and redox titration of its prosthetic groups confirmed that the latter is indeed a flavin‐containing enzyme catalysing the unidirectional reaction of two‐electron reduction of urocanic acid to deamino‐histidine, an activity not reported earlier. UrdA exhibits both high substrate affinity and high turnover rate (Km << 10 μM, kcat = 360 s?1) and strong specificity in favour of urocanic acid. UrdA homologues are present in various bacterial genera, such as Shewanella, Fusobacterium and Clostridium, the latter including the human pathogen Clostridium tetani. The UrdA activity in S. oneidensis is induced by its substrate under anaerobic conditions and it enables anaerobic growth with urocanic acid as a sole terminal electron acceptor. The latter capability can provide the cells of UrdA‐containing bacteria with a niche where no other bacteria can compete and survive.  相似文献   

9.
The bioluminescent bacterial enzyme system NAD(P)H:FMN-oxidoreductase-luciferase has been used as a test system for ecological monitoring. One of the modes to quench bioluminescence is the interaction of xenobiotics with the enzymes, which inhibit their activity. The use of endogenous flavin fluorescence for investigation of the interactions of non-fluorescent compounds with the bacterial luciferase from Photobacterium leiognathi and NAD(P)H:FMN-oxidoreductase from Vibrio fischeri has been proposed. Fluorescence spectroscopy methods have been used to study characteristics of endogenous flavin fluorescence (fluorophore lifetime, the rotational correlation time). The fluorescence anisotropy behaviour of FMN has been analysed and compared to that of the enzyme-bound flavin. The fluorescence characteristics of endogenous flavin of luciferase and NAD(P)H:FMN-oxidoreductase have been shown to be applicable in studying enzymes' interactions with non-fluorescent compounds.  相似文献   

10.
In this study, we analyzed the activity of a bacterial luciferase (LuxAB of Vibrio fischeri) expressed under the control of a consensus-type promoter, lacUV5, in Escherichia coli, and found that activity declines abruptly upon entry into the stationary growth phase. Since this decline was reproducibly observed in strains cultured in various growth media, we refer to this phenomenon as ADLA (Abrupt Decline of Luciferase Activity) and define the time point when activity begins to decline as T 0. Because the levels of luciferase proteins (LuxA and LuxB) remained constant before and after T 0, ADLA cannot be due to the repression of luciferase gene expression. Further analyses suggested that a decline in the supply of intracellular reducing power for luciferase was responsible for ADLA. We also found that ADLA was alleviated or did not occur in several mutants deficient in nucleoid proteins, suggesting that ADLA is a genetically controlled process involved in intracellular redox flow.  相似文献   

11.
In the present study, we demonstrate the use of a disposable luciferase‐based microfluidic bioassay chip for environmental monitoring and methods for fabrication. The designed microfluidic system includes a chamber with immobilized enzymes of bioluminescent bacteria Photobacterium leiognathi and Vibrio fischeri and their substrates, which dissolve after the introduction of the water sample and thus activate bioluminescent reactions. Limits of detection for copper (II) sulfate, 1,3‐dihydroxybenzene and 1,4‐benzoquinone for the proposed microfluidic biosensor measured 3 μM, 15 mM, and 2 μM respectively, and these values are higher or close to the level of conventional environmental biosensors based on lyophilized bacteria. Approaches for entrapment of enzymes on poly(methyl methacrylate) (PMMA) plates using a gelatin scaffold and solvent bonding of PMMA chip plates under room temperature were suggested. The proposed microfluidic system may be used with some available luminometers and future portable luminescence readers.  相似文献   

12.
《Luminescence》2003,18(3):145-155
The purpose of the present paper was to study the influence of bacteria harbouring the luciferase‐encoding Vibrio harveyi luxAB genes upon the spectral emission during growth in batch‐culture conditions. In vivo bioluminescence spectra were compared from several bioluminescent strains, either naturally luminescent (Vibrio fischeri and Vibrio harveyi) or in recombinant strains (two Gram‐negative Escherichia coli::luxAB strains and a Gram‐positive Bacillus subtilis::luxAB strain). Spectral emission was recorded from 400 nm to 750 nm using a highly sensitive spectrometer initially devoted to Raman scattering. Two peaks were clearly identified, one at 491–500 nm (± 5 nm) and a second peak at 585–595 (± 5 nm) with the Raman CCD. The former peak was the only one detected with traditional spectrometers with a photomultiplier detector commonly used for spectral emission measurement, due to their lack of sensitivity and low resolution in the 550–650 nm window. When spectra were compared between all the studied bacteria, no difference was observed between natural or recombinant cells, between Gram‐positive and Gram‐negative strains, and growth conditions and growth medium were not found to modify the spectrum of light emission. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
P66, a Borrelia burgdorferi surface protein with porin and integrin‐binding activities, is essential for murine infection. The role of P66 integrin‐binding activity in B. burgdorferi infection was investigated and found to affect transendothelial migration. The role of integrin binding, specifically, was tested by mutation of two amino acids (D205A,D207A) or deletion of seven amino acids (Del202–208). Neither change affected surface localization or channel‐forming activity of P66, but both significantly reduced binding to αvβ3. Integrin‐binding deficient B. burgdorferi strains caused disseminated infection in mice at 4 weeks post‐subcutaneous inoculation, but bacterial burdens were significantly reduced in some tissues. Following intravenous inoculation, the Del202–208 bacteria were below the limit of detection in all tissues assessed at 2 weeks post‐inoculation, but bacterial burdens recovered to wild‐type levels at 4 weeks post‐inoculation. The delay in tissue colonization correlated with reduced migration of the Del202–208 strains across microvascular endothelial cells, similar to Δp66 bacteria. These results indicate that integrin binding by P66 is important to efficient dissemination of B. burgdorferi, which is critical to its ability to cause disease manifestations in incidental hosts and to its maintenance in the enzootic cycle.  相似文献   

14.
The luminescence signal of luxAB-encoded bacterial luciferase strongly depends on the metabolic state of the host cell, which restricts the use of this reporter system to metabolically active bacteria. Here we show that in stationary-phase cells of Lactococcus lactis, detection of luciferase is significantly improved by the addition of riboflavin or flavin mononucleotide to whole-cell assay systems.  相似文献   

15.
Flashlight fishes (family Anomalopidae) have light organs that contain luminous bacterial symbionts. Although the symbionts have not yet been successfully cultured, the luciferase genes have been cloned directly from the light organ of the Caribbean species, Kryptophanaron alfredi. The goal of this project was to evaluate the relationship of the symbiont to free-living luminous bacteria by comparison of genes coding for bacterial luciferase (lux genes). Hybridization of a luxAB probe from the Kryptophanaron alfredi symbiont to DNAs from 9 strains (8 species) of luminous bacteria showed that none of the strains tested had lux genes highly similar to the symbiont. The most similar were a group consisting of Vibrio harveyi, Vibrio splendidus and Vibrio orientalis. The nucleotide sequence of the luciferase subunit gene luxA of the Kryptophanaron alfredi symbiont was determined in order to do a more detailed comparison with published luxA sequences from Vibrio harveyi, Vibrio fischeri and Photobacterium leiognathi. The hybridization results, sequence comparisons and the mol% G+C of the Kryptophanaron alfredi symbiont luxA gene suggest that the symbiont may be considered as a new species of luminous Vibrio related to Vibrio harveyi.The nucleotide sequence reported in this article has been deposited in Genbank under accession number M36597  相似文献   

16.
Animal–bacterial symbioses are highly dynamic in terms of multipartite interactions, both between the host and its symbionts as well as between the different bacteria constituting the symbiotic community. These interactions will be reflected by the titres of the individual bacterial taxa, for example via host regulation of bacterial loads or competition for resources between symbionts. Moreover, different host tissues represent heterogeneous microhabitats for bacteria, meaning that host‐associated bacteria might establish tissue‐specific bacterial communities. Wolbachia are widespread endosymbiotic bacteria, infecting a large number of arthropods and filarial nematodes. However, relatively little is known regarding direct interactions between Wolbachia and other bacteria. This study represents the first quantitative investigation of tissue‐specific Wolbachia–microbiota interactions in the terrestrial isopod Armadillidium vulgare. To this end, we obtained a more complete picture of the Wolbachia distribution patterns across all major host tissues, integrating all three feminizing Wolbachia strains (wVulM, wVulC, wVulP) identified to date in this host. Interestingly, the different Wolbachia strains exhibited strain‐specific tissue distribution patterns, with wVulM reaching lower titres in most tissues. These patterns were consistent across different host genetic backgrounds and might reflect different co‐evolutionary histories between the Wolbachia strains and A. vulgare. Moreover, Wolbachia‐infected females carried higher total bacterial loads in several, but not all, tissues, irrespective of the Wolbachia strain. Taken together, this quantitative approach indicates that Wolbachia is part of a potentially more diverse bacterial community, as exemplified by the presence of highly abundant bacterial taxa in the midgut caeca of several A. vulgare populations.  相似文献   

17.
  • Salt stress negatively affects growth and development of plants. However, it is hypothesized that plant growth‐promoting endophytic bacteria can greatly alleviate the adverse effects of salinity and can promote growth and development of plants. In the present research, we aimed to isolate endophytic bacteria from halotolerant plants and evaluate their capacity for promoting crop plant growth.
  • The bacterial endophytes were isolated from selected plants inhabiting sand dunes at Pohang beach, screened for plant growth‐promoting traits and applied to rice seedlings under salt stress (NaCl; 150 mm ).
  • Out of 59 endophytic bacterial isolates, only six isolates, i.e. Curtobacterium oceanosedimentum SAK1, Curtobacterium luteum SAK2, Enterobacter ludwigii SAK5, Bacillus cereus SA1, Micrococcus yunnanensis SA2, Enterobacter tabaci SA3, resulted in a significant increase in the growth of Waito‐C rice. The cultural filtrates of bacterial endophytes were tested for phytohormones, including indole‐3‐acetic acid, gibberellins and organic acids. Inoculation of the selected strains considerably reduced the amount of endogenous ABA in rice plants under NaCl stress, however, they increased GSH and sugar content. Similarly, these strains augmented the expression of flavin monooxygenase (OsYUCCA1) and auxin efflux carrier (OsPIN1) genes under salt stress.
  • In conclusion, the pragmatic application of the above selected bacterial strains alleviated the adverse effects of NaCl stress and enhanced rice growth attributes by producing various phytohormones.
  相似文献   

18.
Worldwide efforts are underway to develop new antimicrobial agents against bacterial resistance. To identify new compounds with a good antimicrobial profile, we designed and synthesized two series of small cationic antimicrobial peptidomimetics (1–8) containing unusual arginine mimetics (to introduce cationic charges) and several aromatic amino acids (bulky moieties to improve lipophilicity). Both series were screened for in vitro antibacterial activity against a representative panel of Gram‐positive (Staphylococcus aureus and Staphylococcus epidermidis) and Gram‐negative (Escherichia coli and Klebsiella pneumoniae) bacterial strains, and Candida albicans. The biological screening showed that peptidomimetics containing tryptophan residues are endowed with the best antimicrobial activity against S. aureus and S. epidermidis in respect to the other synthesized derivatives (MIC values range 7.5–50 µg/ml). Moreover, small antimicrobial peptidomimetics derivatives 2 and 5 showed an appreciable activity against the tested Gram‐negative bacteria and C. albicans. The most active compounds (1–2 and 5–6) have been tested against Gram‐positive established biofilm, too. Results showed that the biofilm inhibitory concentration values of these compounds were never up to 200 µg/ml. The replacement of tryptophan with phenylalanine or tyrosine resulted in considerable loss of the antibacterial action (compounds 3–4 and 7–8) against both Gram‐positive and Gram‐negative bacterial strains. Furthermore, by evaluating hemolytic activity, the synthesized compounds did not reveal cytotoxic activities, except for compound 5. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

Deep-sea microorganisms are a new source of bioactive compounds. In this study, crude ethyl acetate extracts of 176 strains of deep-sea bacteria, isolated from sediments of the West Pacific Ocean, were screened for their antibacterial activity against four test bacterial strains isolated from marine biofilms. Of these, 28 deep-sea bacterial strains exhibited antibacterial activity against one or more of the bacteria tested. Active deep-sea bacterial strains belonged mainly to the genera of Pseudomonas, Psychrobacter and Halomonas. Additionally, antilarval activity of 56 deep-sea bacterial strains was screened using Balanus amphitrite larvae. Seven bacterial strains produced metabolites that had strong inhibitive effects on larval settlement. None of these metabolites showed significant toxicity. The crude extract of one deep-sea Streptomyces strain could completely inhibit larval settlement at a concentration of 25 μg ml?1.  相似文献   

20.
Dinoflagellates are the most abundant protists that produce bioluminescence. Currently, there is an incomplete knowledge of the identity of bioluminescent species arising from inter‐ and intraspecific variability in bioluminescence properties. In this study, PCR primers were designed to amplify the dinoflagellate luciferase gene (lcf) from genetically distant bioluminescent species. One of the primer pairs was “universal,” whereas others amplified longer gene sequences from subsets of taxa. The primers were used to study the distribution of lcf and assess bioluminescence potential in dinoflagellate strains representing a wide variety of taxa as well as multiple strains of selected species. Strains of normally bioluminescent species always contained lcf even when they were found not to produce light, thus demonstrating the utility of this methodology as a powerful tool for identifying bioluminescent species. Bioluminescence and lcf were confined to the Gonyaulacales, Noctilucales, and Peridiniales. Considerable variation was observed among genera, or even species within some genera, that contained this gene. Partial sequences of lcf were obtained for the genera Ceratocorys, Ceratium, Fragilidium, and Protoperidinium as well as from previously untested species or gene regions of Alexandrium and Gonyaulax. The sequences revealed high variation among gene copies that obscured the boundaries between species or even genera, some of which could be explained by the presence of two genetic variants within the same species of Alexandrium. Highly divergent sequences within Alexandrium and Ceratium show a more diverse composition of lcf than previously known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号