首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endocytosis and exocytosis are strictly segregated at the ends of hyphal cells of filamentous fungi, with a collar of endocytic activity encircling the growing cell tip, which elongates through directed membrane fusion. It has been proposed that this separation supports an endocytic recycling pathway that maintains polar localization of proteins at the growing apex. In a search for proteins in the filamentous fungus Aspergillus nidulans that possess an NPFxD motif, which signals for endocytosis, a Type 4 P‐Type ATPase was identified and named DnfA. Interestingly, NPFxD is at a different region of DnfA than the same motif in the Saccharomyces cerevisiae ortholog, although endocytosis is dependent on this motif for both proteins. DnfA is involved in asexual sporulation and polarized growth. Additionally, it is segregated within the Spitzenkörper from another Type 4 P‐type ATPase, DnfB. Next, the phosphatidylserine marker GFP::Lact‐C2 was expressed in growing hyphae, which revealed that this phospholipid is enriched on the cytosolic face of secretory vesicles. This distribution is affected by deleting either dnfA or dnfB. These findings provide evidence for the spatial and temporal segregation of Type4‐ATPases in filamentous fungi, and the asymmetric distribution of phosphatidylserine to the Spitzenkörper in A. nidulans.  相似文献   

2.
Polarized growth in filamentous fungi needs a continuous supply of proteins and lipids to the growing hyphal tip. One of the important membrane compounds in fungi is ergosterol. At the apical plasma membrane ergosterol accumulations, which are called sterol-rich plasma membrane domains (SRDs). The exact roles and formation mechanism of the SRDs remained unclear, although the importance has been recognized for hyphal growth. Transport of ergosterol to hyphal tips is thought to be important for the organization of the SRDs. Oxysterol binding proteins, which are conserved from yeast to human, are involved in nonvesicular sterol transport. In Saccharomyces cerevisiae seven oxysterol-binding protein homologues (OSH1 to -7) play a role in ergosterol distribution between closely located membranes independent of vesicle transport. We found five homologous genes (oshA to oshE) in the filamentous fungi Aspergillus nidulans. The functions of OshA-E were characterized by gene deletion and subcellular localization. Each gene-deletion strain showed characteristic phenotypes and different sensitivities to ergosterol-associated drugs. Green fluorescent protein-tagged Osh proteins showed specific localization in the late Golgi compartments, puncta associated with the endoplasmic reticulum, or diffusely in the cytoplasm. The genes expression and regulation were investigated in a medically important species Aspergillus fumigatus, as well as A. nidulans. Our results suggest that each Osh protein plays a role in ergosterol distribution at distinct sites and contributes to proper fungal growth.  相似文献   

3.
Endocytosis is vital for hyphal tip growth in filamentous fungi and is involved in the tip localization of various membrane proteins. To investigate the function of a Wiskott–Aldrich syndrome protein (WASP) in endocytosis of filamentous fungi, we identified a WASP ortholog-encoding gene, wspA, in Aspergillus nidulans and characterized it. The wspA product, WspA, localized to the tips of germ tubes during germination and actin rings in the subapical regions of mature hyphae. wspA is essential for the growth and functioned in the polarity establishment and maintenance during germination of conidia. We also investigated its function in endocytosis and revealed that endocytosis of SynA, a synaptobrevin ortholog that is known to be endocytosed at the subapical regions of hyphal tips in A. nidulans, did not occur when wspA expression was repressed. These results suggest that WspA plays roles in endocytosis at hyphal tips and polarity establishment during germination.  相似文献   

4.
Summary The hyphal tip ultrastructure ofAspergillus nidulans andAspergillus giganteus indicates that their apical organization is very similar to that found in other filamentous fungi. Both species have an area immediately behind the hyphal apex free of all large organelles and containing a high concentration of vesicles. InA. giganteus only one size class of vesicle is clearly evident, with a mean diameter of 72 nm. InA. nidulans two size classes of vesicle were found, with mean diameters of 75 nm and 31 nm. A Spitzenkörper is evident inA. nidulans as an area very close to the tip containing only the smaller vesicles. InA. giganteus one or more apparently mature Woronin bodies were found within the first 1 m of some hyphal apices. The possible significance of their presence is discussed.  相似文献   

5.
The tip growth apparatus of Aspergillus nidulans   总被引:4,自引:0,他引:4  
Hyphal tip growth in fungi is important because of the economic and medical importance of fungi, and because it may be a useful model for polarized growth in other organisms. We have investigated the central questions of the roles of cytoskeletal elements and of the precise sites of exocytosis and endocytosis at the growing hyphal tip by using the model fungus Aspergillus nidulans. Time-lapse imaging of fluorescent fusion proteins reveals a remarkably dynamic, but highly structured, tip growth apparatus. Live imaging of SYNA, a synaptobrevin homologue, and SECC, an exocyst component, reveals that vesicles accumulate in the Spitzenkörper (apical body) and fuse with the plasma membrane at the extreme apex of the hypha. SYNA is recycled from the plasma membrane by endocytosis at a collar of endocytic patches, 1–2 μm behind the apex of the hypha, that moves forward as the tip grows. Exocytosis and endocytosis are thus spatially coupled. Inhibitor studies, in combination with observations of fluorescent fusion proteins, reveal that actin functions in exocytosis and endocytosis at the tip and in holding the tip growth apparatus together. Microtubules are important for delivering vesicles to the tip area and for holding the tip growth apparatus in position.  相似文献   

6.
Cytoplasmic microtubules (MTs) serve as a rate‐limiting factor for hyphal tip growth in the filamentous fungus Aspergillus nidulans. We hypothesized that this function depended on the MT plus end‐tracking proteins (+TIPs) including the EB1 family protein EBA that decorated the MT plus ends undergoing polymerization. The ebAΔ mutation reduced colony growth and the mutant hyphae appeared in an undulating pattern instead of exhibiting unidirectional growth in the control. These phenotypes were enhanced by a mutation in another +TIP gene clipA. EBA was required for plus end‐tracking of CLIPA, the Kinesin‐7 motor KipA, and the XMAP215 homologue AlpA. In addition, cytoplasmic dynein also depended on EBA to track on most polymerizing MT plus ends, but not for its conspicuous appearance at the MT ends near the hyphal apex. The loss of EBA reduced the number of cytoplasmic MTs and prolonged dwelling times for MTs after reaching the hyphal apex. Finally, we found that colonies were formed in the absence of EBA, CLIPA, and NUDA together, suggesting that they were dispensable for fundamental functions of MTs. This study provided a comprehensive delineation of the relationship among different +TIPs and their contributions to MT dynamics and unidirectional hyphal expansion in filamentous fungi.  相似文献   

7.
Coronin plays a major role in the organization and dynamics of actin in yeast. To investigate the role of coronin in a filamentous fungus (Neurospora crassa), we examined its subcellular localization using fluorescent proteins and the phenotypic consequences of coronin gene (crn-1) deletion in hyphal morphogenesis, Spitzenk?rper behavior and endocytosis. Coronin-GFP was localized in patches, forming a subapical collar near the hyphal apex; significantly, it was absent from the apex. The subapical patches of coronin colocalized with fimbrin, Arp2/3 complex, and actin, altogether comprising the endocytic collar. Deletion of crn-1 resulted in reduced hyphal growth rates, distorted hyphal morphology, uneven wall thickness, and delayed establishment of polarity during germination; it also affected growth directionality and increased branching. The Spitzenk?rper of Δcrn-1 mutant was unstable; it appeared and disappeared intermittently giving rise to periods of hyphoid-like and isotropic growth respectively. Uptake of FM4-64 in Δcrn-1 mutant indicated a partial disruption in endocytosis. These observations underscore coronin as an important component of F-actin remodeling in N. crassa. Although coronin is not essential in this fungus, its deletion influenced negatively the operation of the actin cytoskeleton involved in the orderly deployment of the apical growth apparatus, thus preventing normal hyphal growth and morphogenesis.  相似文献   

8.
Syntaxins are target‐SNAREs that crucially contribute to determine membrane compartment identity. Three syntaxins, Tlg2p, Pep12p and Vam3p, organize the yeast endovacuolar system. Remarkably, filamentous fungi lack the equivalent of the yeast vacuolar syntaxin Vam3p, making unclear how these organisms regulate vacuole fusion. We show that the nearly essential Aspergillus nidulans syntaxin PepAPep12, present in all endocytic compartments between early endosomes and vacuoles, shares features of Vam3p and Pep12p, and is capable of forming compositional equivalents of all known yeast endovacuolar SNARE bundles including that formed by yeast Vam3p for vacuolar fusion. Our data further indicate that regulation by two Sec1/Munc‐18 proteins, Vps45 in early endosomes and Vps33 in early and late endosomes/vacuoles contributes to the wide domain of PepAPep12 action. The syntaxin TlgBTlg2 localizing to the TGN appears to mediate retrograde traffic connecting post‐Golgi (sorting) endosomes with the TGN. TlgBTlg2 is dispensable for growth but becomes essential if the early Golgi syntaxin SedVSed5 is compromised, showing that the Golgi can function with a single syntaxin, SedVSed5. Remarkably, its pattern of associations with endosomal SNAREs is consistent with SedVSed5 playing roles in retrograde pathway(s) connecting endocytic compartments downstream of the post‐Golgi endosome with the Golgi, besides more conventional intra‐Golgi roles.  相似文献   

9.
Rapid and long-distance secretion of membrane components is critical for hyphal formation in filamentous fungi, but the mechanisms responsible for polarized trafficking are not well understood. Here, we demonstrate that in Candida albicans, the majority of the Golgi complex is redistributed to the distal region during hyphal formation. Randomly distributed Golgi puncta in yeast cells cluster toward the growing tip during hyphal formation, remain associated with the distal portion of the filament during its extension, and are almost absent from the cell body. This restricted Golgi localization pattern is distinct from other organelles, including the endoplasmic reticulum, vacuole and mitochondria, which remain distributed throughout the cell body and hypha. Hyphal-induced positioning of the Golgi and the maintenance of its structural integrity requires actin cytoskeleton, but not microtubules. Absence of the formin Bni1 causes a hyphal-specific dispersal of the Golgi into a haze of finely dispersed vesicles with a sedimentation density no different from that of normal Golgi. These results demonstrate the existence of a hyphal-specific, Bni1-dependent cue for Golgi integrity and positioning at the distal portion of the hyphal tip, and suggest that filamentous fungi have evolved a novel strategy for polarized secretion, involving a redistribution of the Golgi to the growing tip.  相似文献   

10.
AP‐2 complex is widely distributed in eukaryotes in the form of heterotetramer that functions in the uptake of membrane proteins during mammalian/plant clathrin‐mediated endocytosis. However, its biological function remains mysterious in pathogenic fungi. In this study, the wheat scab fungus, Fusarium graminearum, was used to characterise the biological function of the AP‐2 complex. Our study shows that FgAP‐2 complex plays a critical role in the maintenance of hyphal polarity. Lack of any subunit (FgAP2α, FgAP2β, FgAP2σ, and FgAP2mu) of the FgAP‐2 complex significantly affects the fungal vegetative growth, conidial morphology, and germination. Remarkably, FgAP‐2 complex is important for the fungal pathogenicity, especially during colonisation and extension after infecting the host. The FgAP‐2 complex is expressed ubiquitously at all developmental stages but having more concentrated protein distribution at the subapical collar and septa in young growing hyphae. Although FgAP‐2 complex displays similar dynamic behaviour to the actin patch components and accumulates at endocytic sites, it is dispensable for general endocytosis. We further demonstrated that FgAP‐2 complex is required for polar localisation of the lipid flippases FgDnfA and FgDnfB, which led to the proposal that FgAP‐2 functions as a cargo‐specific adaptor that promotes polar growth and colonising ability of Fgraminearum.  相似文献   

11.
In metazoans the AP‐2 complex has a well‐defined role in clathrin‐mediated endocytosis. By contrast, its direct role in endocytosis in unicellular eukaryotes has been questioned. Here, we report co‐ immunoprecipitation between the fission yeast AP‐2 component Apl3p and clathrin, as well as the genetic interactions between apl3Δ and clc1 and sla2Δ/end4Δ mutants. Furthermore, a double clc1 apl3Δ mutant was found to be defective in FM4‐64 uptake. In an otherwise wild‐type strain, apl3Δ cells exhibit altered dynamics of the endocytic sites, with a heterogeneous and extended lifetime of early and late markers at the patches. Additionally, around 50% of the endocytic patches exhibit abnormal spatial dynamics, with immobile patches and patches that bounce backwards to the cell surface, showing a pervasive effect of the absence of AP‐2. These alterations in the endocytic machinery result in abnormal cell wall synthesis and morphogenesis. Our results complement those found in budding yeast and confirm that a direct role of AP‐2 in endocytosis has been conserved throughout evolution.  相似文献   

12.
Clostridial binary toxins, such as Clostridium perfringens Iota and Clostridium botulinum C2, are composed of a binding protein (Ib and C2II respectively) that recognizes distinct membrane receptors and mediates internalization of a catalytic protein (Ia and C2‐I respectively) with ADP‐ribosyltransferase activity that disrupts the actin cytoskeleton. We show here that the endocytic pathway followed by these toxins is independent of clathrin but requires the activity of dynamin and is regulated by Rho‐GDI. This endocytic pathway is similar to a recently characterized clathrin‐independent pathway followed by the interleukin‐2 (IL2) receptor. We found indeed that Ib and C2II colocalized intracellularly with the IL2 receptor but not the transferrin receptor after different times of endocytosis. Accordingly, the intracellular effects of Iota and C2 on the cytoskeleton were inhibited by inactivation of dynamin or by Rho‐GDI whereas inhibitors of clathrin‐dependent endocytosis had no protective effect.  相似文献   

13.
Fuchs U  Steinberg G 《Protoplasma》2005,226(1-2):75-80
Summary. Filamentous fungi are an important group of tip-growing organisms, which include numerous plant pathogens such as Magnaporthe grisea and Ustilago maydis. Despite their ecological and economical relevance, we are just beginning to unravel the importance of endocytosis in filamentous fungi. Most evidence for endocytosis in filamentous fungi is based on the use of endocytic tracer dyes that are taken up into the cell and delivered to the vacuole. Moreover, genomewide screening for candidate genes in Neurospora crassa and U. maydis confirmed the presence of most components of the endocytic machinery, indicating that endocytosis participates in filamentous growth. Indeed, it was shown that in U. maydis early endosomes cluster at sites of growth, where they support morphogenesis and polar growth, most likely via endosome-based membrane recycling. In humans, such recycling processes to the plasma membrane involve small GTPases such as Rab4. A homologue of this protein is encoded in the genome of U. maydis but is absent from the yeast Saccharomyces cerevisiae, suggesting that Rab4-mediated recycling is important for filamentous growth. Furthermore, human Rab4 regulates traffic of early endosomes along microtubules, and a similar microtubule-based transport is described for U. maydis. These observations suggest that Rab4-like GTPases might regulate endosome- and microtubule-based recycling during tip growth of filamentous fungi. Correspondence and reprints: MPI für terrestrische Mikrobiologie, Karl-von-Frisch-Strasse, 35043 Marburg, Federal Republic of Germany.  相似文献   

14.
Actin plays multiple complex roles in cell growth and cell shape. Recently it was demonstrated that actin patches, which represent sites of endocytosis, are present in a sub-apical collar at growing tips of hyphae and germ tubes of filamentous fungi. It is now clear that this zone of endocytosis is necessary for filamentous growth to proceed. In this review evidence for the role of these endocytic sites in hyphal growth is examined. One possibility if that the role of the sub-apical collar is associated with endocytic recycling of polarized material at the hyphal tip. The 'Apical Recycling Model' accounts for this role and predicts the need for a balance between endocytosis and exocytosis at the hyphal tip to control growth and cell shape. Other cell differentiation events, including appressorium formation and Aspergillus conidiophore development may also be explained by this model.  相似文献   

15.
Clathrin‐mediated endocytosis is a fundamental transport pathway that depends on numerous protein‐protein interactions. Testing the importance of the adaptor protein‐clathrin interaction for coat formation and progression of endocytosis in vivo has been difficult due to experimental constrains. Here, we addressed this question using the yeast clathrin adaptor Sla1, which is unique in showing a cargo endocytosis defect upon substitution of 3 amino acids in its clathrin‐binding motif (sla1AAA) that disrupt clathrin binding. Live‐cell imaging showed an impaired Sla1‐clathrin interaction causes reduced clathrin levels but increased Sla1 levels at endocytic sites. Moreover, the rate of Sla1 recruitment was reduced indicating proper dynamics of both clathrin and Sla1 depend on their interaction. sla1AAA cells showed a delay in progression through the various stages of endocytosis. The Arp2/3‐dependent actin polymerization machinery was present for significantly longer time before actin polymerization ensued, revealing a link between coat formation and activation of actin polymerization. Ultimately, in sla1AAA cells a larger than normal actin network was formed, dramatically higher levels of various machinery proteins other than clathrin were recruited, and the membrane profile of endocytic invaginations was longer. Thus, the Sla1‐clathrin interaction is important for coat formation, regulation of endocytic progression and membrane bending.   相似文献   

16.
Endocytosis is a vital cellular process maintaining the cell surface, modulating signal transduction and facilitating nutrient acquisition. In metazoa, multiple endocytic modes are recognized, but for many unicellular organisms the process is likely dominated by the ancient clathrin‐mediated pathway. The endocytic system of the highly divergent trypanosomatid Trypanosoma brucei exhibits many unusual features, including a restricted site of internalization, dominance of the plasma membrane by GPI‐anchored proteins, absence of the AP2 complex and an exceptionally high rate. Here we asked if the proteins subtending clathrin trafficking in trypanosomes are exclusively related to those of higher eukaryotes or if novel, potentially taxon‐specific proteins operate. Co‐immunoprecipitation identified twelve T. brucei clathrin‐associating proteins (TbCAPs), which partially colocalized with clathrin. Critically, eight TbCAPs are restricted to trypanosomatid genomes and all of these are required for robust cell proliferation. A subset, TbCAP100, TbCAP116, TbCAP161 and TbCAP334, were implicated in distinct endocytic steps by detailed analysis of knockdown cells. Coupled with the absence of orthologs for many metazoan and fungal endocytic factors, these data suggest that clathrin interactions in trypanosomes are highly lineage‐specific, and indicate substantial evolutionary diversity within clathrin‐mediated endocytosis mechanisms across the eukaryotes.  相似文献   

17.
Candida albicans is an opportunistic fungal pathogen that colonises the skin as well as genital and intestinal mucosa of most healthy individuals. The ability of Calbicans to switch between different morphological states, for example, from an ellipsoid yeast form to a highly polarised, hyphal form, contributes to its success as a pathogen. In highly polarised tip‐growing cells such as neurons, pollen tubes, and filamentous fungi, delivery of membrane and cargo to the filament apex is achieved by long‐range delivery of secretory vesicles tethered to motors moving along cytoskeletal cables that extend towards the growing tip. To investigate whether such a mechanism is also critical for Calbicans filamentous growth, we studied the dynamics and organisation of the Calbicans secretory pathway using live cell imaging and three‐dimensional electron microscopy. We demonstrate that the secretory pathway is organised in distinct domains, including endoplasmic reticulum membrane sheets that extend along the length of the hyphal filament, a sub‐apical zone exhibiting distinct membrane structures and dynamics and a Spitzenkörper comprised of uniformly sized secretory vesicles. Our results indicate that the organisation of the secretory pathway in Calbicans likely facilitates short‐range “on‐site” secretory vesicle delivery, in contrast to filamentous fungi and many highly polarised cells.  相似文献   

18.
Nutrient sensing and utilisation are fundamental for all life forms. As heterotrophs, fungi have evolved a diverse range of mechanisms for sensing and taking up various nutrients. Despite its importance, only a limited number of nutrient receptors and their corresponding ligands have been identified in fungi. G‐protein coupled receptors (GPCRs) are the largest family of transmembrane receptors. The Aspergillus nidulans genome encodes 16 putative GPCRs, but only a few have been functionally characterised. Our previous study showed the increased expression of an uncharacterised putative GPCR, gprH, during carbon starvation. GprH appears conserved throughout numerous filamentous fungi. Here, we reveal that GprH is a putative receptor involved in glucose and tryptophan sensing. The absence of GprH results in a reduction in cAMP levels and PKA activity upon adding glucose or tryptophan to starved cells. GprH is pre‐formed in conidia and is increasingly active during carbon starvation, where it plays a role in glucose uptake and the recovery of hyphal growth. GprH also represses sexual development under conditions favouring sexual fruiting and during carbon starvation in submerged cultures. In summary, the GprH nutrient‐sensing system functions upstream of the cAMP‐PKA pathway, influences primary metabolism and hyphal growth, while represses sexual development in A. nidulans.  相似文献   

19.
During clathrin‐mediated endocytosis, adaptor proteins play central roles in coordinating the assembly of clathrin coats and cargo selection. Here we characterize the binding of the yeast endocytic adaptor Sla1p to clathrin through a variant clathrin‐binding motif that is negatively regulated by the Sla1p SHD2 domain. The crystal structure of SHD2 identifies the domain as a sterile α‐motif (SAM) domain and shows a propensity to oligomerize. By co‐immunoprecipitation, Sla1p binds to clathrin and self‐associates in vivo. Mutations in the clathrin‐binding motif that abolish clathrin binding and structure‐based mutations in SHD2 that impede self‐association result in endocytosis defects and altered dynamics of Sla1p assembly at the sites of endocytosis. These results define a novel mechanism for negative regulation of clathrin binding by an adaptor and suggest a role for SAM domains in clathrin‐mediated endocytosis.  相似文献   

20.
Vesicle traffic involves budding, transport, tethering and fusion of vesicles with acceptor membranes. GTP‐bound small Rab GTPases interact with the membrane of vesicles, promoting their association with other factors before their subsequent fusion. Filamentous fungi contain at their hyphal apex the Spitzenkörper (Spk), a multivesicular structure to which vesicles concentrate before being redirected to specific cell sites. The regulatory mechanisms ensuring the directionality of the vesicles that travel to the Spk are still unknown. Hence, we analyzed YPT‐1, the Neurospora crassa homologue of Saccharomyces cerevisiae Ypt1p (Rab1), which regulates different secretory pathway events. Laser scanning confocal microscopy revealed fluorescently tagged YPT‐1 at the Spk and putative Golgi cisternae. Co‐expression of YPT‐1 and predicted post‐Golgi Rab GTPases showed YPT‐1 confined to the Spk microvesicular core, while SEC‐4 (Rab8) and YPT‐31 (Rab11) occupied the Spk macrovesicular peripheral layer, suggesting that trafficking and organization of macro and microvesicles at the Spk are regulated by distinct Rabs. Partial colocalization of YPT‐1 with USO‐1 (p115) and SEC‐7 indicated the additional participation of YPT‐1 at early and late Golgi trafficking steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号