首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Metabolism in trypanosomatids is compartmentalised with major pathways, notably glycolysis, present in peroxisome-like organelles called glycosomes. To date, little information is available about the transport of metabolites through the glycosomal membrane. Previously, three ATP-binding cassette (ABC) transporters, called GAT1-3 for Glycosomal ABC Transporters 1 to 3, have been identified in the glycosomal membrane of Trypanosoma brucei. Here we report that GAT1 and GAT3 are expressed both in bloodstream and procyclic form trypanosomes, whereas GAT2 is mainly or exclusively expressed in bloodstream-form cells. Protease protection experiments showed that the nucleotide-binding domain of GAT1 and GAT3 is exposed to the cytosol, indicating that these transporters mediate the ATP-dependent uptake of solutes from the cytosol into the glycosomal lumen. Depletion of GAT1 and GAT3 by RNA interference in procyclic cells grown in glucose-containing medium did not affect growth. Surprisingly, GAT1 depletion enhanced the expression of the very different GAT3 protein. Expression knockdown of GAT1, but not GAT3, in procyclic cells cultured in glucose-free medium was lethal. Depletion of GAT1 in glucose-grown procyclic cells caused a modification of the total cellular fatty-acid composition. No or only minor changes were observed in the levels of most fatty acids, including oleate (C18:1), nevertheless the linoleate (C18:2) abundance was significantly increased upon GAT1 silencing. Furthermore, glycosomes purified from procyclic wild-type cells incorporate oleoyl-CoA in a concentration- and ATP-dependent manner, whilst this incorporation was severely reduced in glycosomes from cells in which GAT1 levels had been decreased. Together, these results strongly suggest that GAT1 serves to transport primarily oleoyl-CoA, but possibly also other fatty acids, from the cytosol into the glycosomal lumen and that its depletion results in a cellular linoleate accumulation, probably due to the presence of an active oleate desaturase. The role of intraglycosomal oleoyl-CoA and its essentiality when the trypanosomes are grown in the absence of glucose, are discussed.  相似文献   

2.
Deoxycytidine kinase (dCK) is an essential nucleoside kinase critical for the production of nucleotide precursors for DNA synthesis. This enzyme catalyzes the initial conversion of the nucleosides deoxyadenosine (dA), deoxyguanosine (dG), and deoxycytidine (dC) into their monophosphate forms, with subsequent phosphorylation to the triphosphate forms performed by additional enzymes. Several nucleoside analog prodrugs are dependent on dCK for their pharmacological activation, and even nucleosides of the non-physiological L-chirality are phosphorylated by dCK. In addition to accepting dC and purine nucleosides (and their analogs) as phosphoryl acceptors, dCK can utilize either ATP or UTP as phosphoryl donors. To unravel the structural basis for substrate promiscuity of dCK at both the nucleoside acceptor and nucleotide donor sites, we solved the crystal structures of the enzyme as ternary complexes with the two enantiomeric forms of dA (D-dA, or L-dA), with either UDP or ADP bound to the donor site. The complexes with UDP revealed an open state of dCK in which the nucleoside, either D-dA or L-dA, is surprisingly bound in a manner not consistent with catalysis. In contrast, the complexes with ADP, with either D-dA or L-dA, adopted a closed and catalytically competent conformation. The differential states adopted by dCK in response to the nature of the nucleotide were also detected by tryptophan fluorescence experiments. Thus, we are in the unique position to observe differential effects at the acceptor site due to the nature of the nucleotide at the donor site, allowing us to rationalize the different kinetic properties observed with UTP to those with ATP.  相似文献   

3.
ABC transporters: bacterial exporters.   总被引:1,自引:0,他引:1       下载免费PDF全文
The ABC transporters (also called traffic ATPases) make up a large superfamily of proteins which share a common function and a common ATP-binding domain. ABC transporters are classified into three major groups: bacterial importers (the periplasmic permeases), eukaryotic transporters, and bacterial exporters. We present a comprehensive review of the bacterial ABC exporter group, which currently includes over 40 systems. The bacterial ABC exporter systems are functionally subdivided on the basis of the type of substrate that each translocates. We describe three main groups: protein exporters, peptide exporters, and systems that transport nonprotein substrates. Prototype exporters from each group are described in detail to illustrate our current understanding of this protein family. The prototype systems include the alpha-hemolysin, colicin V, and capsular polysaccharide exporters from Escherichia coli, the protease exporter from Erwinia chrysanthemi, and the glucan exporters from Agrobacterium tumefaciens and Rhizobium meliloti. Phylogenetic analysis of the ATP-binding domains from 29 bacterial ABC exporters indicates that the bacterial ABC exporters can be divided into two primary branches. One branch contains the transport systems where the ATP-binding domain and the membrane-spanning domain are present on the same polypeptide, and the other branch contains the systems where these domains are found on separate polypeptides. Differences in substrate specificity do not correlate with evolutionary relatedness. A complete survey of the known and putative bacterial ABC exporters is included at the end of the review.  相似文献   

4.
Plant sucrose transporters (SUTs) are H(+)-coupled uptake transporters. Type I and II (SUTs) are phylogenetically related but have different substrate specificities. Type I SUTs transport sucrose, maltose, and a wide range of natural and synthetic α- and β-glucosides. Type II SUTs are more selective for sucrose and maltose. Here, we investigated the structural basis for this difference in substrate specificity. We used a novel gene shuffling method called synthetic template shuffling to introduce 62 differentially conserved amino acid residues from type I SUTs into OsSUT1, a type II SUT from rice. The OsSUT1 variants were tested for their ability to transport the fluorescent coumarin β-glucoside esculin when expressed in yeast. Fluorescent yeast cells were selected using fluorescence-activated cell sorting (FACS). Substitution of five amino acids present in type I SUTs in OsSUT1 was found to be sufficient to confer esculin uptake activity. The changes clustered in two areas of the OsSUT1 protein: in the first loop and the top of TMS2 (T80L and A86K) and in TMS5 (S220A, S221A, and T224Y). The substrate specificity of this OsSUT1 variant was almost identical to that of type I SUTs. Corresponding changes in the sugarcane type II transporter ShSUT1 also changed substrate specificity, indicating that these residues contribute to substrate specificity in type II SUTs in general.  相似文献   

5.
The ATP switch model for ABC transporters   总被引:1,自引:0,他引:1  
ABC transporters mediate active translocation of a diverse range of molecules across all cell membranes. They comprise two nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Recent biochemical, structural and genetic studies have led to the ATP-switch model in which ATP binding and ATP hydrolysis, respectively, induce formation and dissociation of an NBD dimer. This provides an exquisitely regulated switch that induces conformational changes in the TMDs to mediate membrane transport.  相似文献   

6.
Summary Little is known about the genetic basis and molecular mechanisms regulating female gametogenesis in flowering plants. In many species sexuality is replaced by apomixis, a method of asexual reproduction that circumvents female meiosis and fertilization, and culminates in the formation of clonal seeds. Using a new generation of transposon based insertional mutagenesis strategies and their resulting molecular tools, we are investigating how female meiotically derived cells (megaspores) acquire their identity. We are also determining their function and interactions, and attempting the induction of apomixis initiation in the ovule of Arabidopsis. This basic knowledge will contribute to establish the transfer of apomixis into sexual crops, a major challenge faced by plant biotechnology. The introduction of apomixis as a reproductive alternative could represent a unique opportunity to simplify breeding schemes and genetically perpetuate any desired heterozygous genotype, including hybrids.  相似文献   

7.
More than 20 residues within the four core histone proteins of the nucleosome are potential sites of post-translational modifications, such as methylation, acetylation, ubiquitination and phosphorylation. It has been hypothesized that specific patterns of these modifications on the nucleosome facilitate recruitment of non-histone proteins to chromatin. When such modifications are restricted to particular regions of the genome, they seem to play an important role in creating specific chromatin domains. However, more recent results suggest that some histone modifications, particularly those that exist on a genome-wide scale, act to reduce nonspecific binding by chromatin proteins involved in silencing. This decrease of promiscuous binding ensures that the silent chromatin proteins are not titrated away from their normal locations on chromosomes. We suggest that preventing such promiscuous binding of chromatin proteins is an important part of generating specificity to create chromatin domains and overall chromosome organization.  相似文献   

8.
Jacalin, a tetrameric lectin, is one of the two lectins present in jackfruit (Artocarpus integrifolia) seeds. Its crystal structure revealed, for the first time, the occurrence of the beta-prism I fold in lectins. The structure led to the elucidation of the crucial role of a new N terminus generated by post-translational proteolysis for the lectin's specificity for galactose. Subsequent X-ray studies on other carbohydrate complexes showed that the extended binding site of jacalin consisted of, in addition to the primary binding site, a hydrophobic secondary site A composed of aromatic residues and a secondary site B involved mainly in water-bridges. A recent investigation involving surface plasmon resonance and the X-ray analysis of a methyl-alpha-mannose complex, had led to a suggestion of promiscuity in the lectin's sugar specificity. To explore this suggestion further, detailed isothermal titration calorimetric studies on the interaction of galactose (Gal), mannose (Man), glucose (Glc), Me-alpha-Gal, Me-alpha-Man, Me-alpha-Glc and other mono- and oligosaccharides of biological relevance and crystallographic studies on the jacalin-Me-alpha-Glc complex and a new form of the jacalin-Me-alpha-Man complex, have been carried out. The binding affinity of Me-alpha-Man is 20 times weaker than that of Me-alpha-Gal. The corresponding number is 27, when the binding affinities of Gal and Me-alpha-Gal, and those of Man and Me-alpha-Man are compared. Glucose (Glc) shows no measurable binding, while the binding affinity of Me-alpha-Glc is slightly less than that of Me-alpha-Man. The available crystal structures of jacalin-sugar complexes provide a convincing explanation for the energetics of binding in terms of interactions at the primary binding site and secondary site A. The other sugars used in calorimetric studies show no detectable binding to jacalin. These results and other available evidence suggest that jacalin is specific to O-glycans and its affinity to N-glycans is extremely weak or non-existent and therefore of limited value in processes involving biological recognition.  相似文献   

9.
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are a 48-member superfamily of membrane proteins that actively transport a variety of biological substrates across lipid membranes. Their functional diversity defines an expansive involvement in myriad aspects of human biology. At least 21 ABC transporters underlie rare monogenic disorders, with even more implicated in the predisposition to and symptomology of common and complex diseases. Such broad (patho)physiological relevance places this class of proteins at the intersection of disease causation and therapeutic potential, underlining them as promising targets for drug discovery, as exemplified by the transformative CFTR (ABCC7) modulator therapies for cystic fibrosis. This review will explore the growing relevance of ABC transporters to human disease and their potential as small-molecule drug targets.  相似文献   

10.
Hinz A  Tampé R 《Biochemistry》2012,51(25):4981-4989
The transporter associated with antigen processing (TAP) is a prototype of an asymmetric ATP-binding cassette (ABC) transporter, which uses ATP binding and hydrolysis to translocate peptides from the cytosol to the lumen of the endoplasmic reticulum (ER). Here, we review molecular details of peptide binding and ATP binding and hydrolysis as well as the resulting allosteric cross-talk between the nucleotide-binding domains and the transmembrane domains that drive translocation of the solute across the ER membrane. We also discuss the general molecular architecture of ABC transporters and demonstrate the importance of structural and functional studies for a better understanding of the role of the noncanonical site of asymmetric ABC transporters. Several aspects of peptide binding and specificity illustrate details of peptide translocation by TAP. Furthermore, this ABC transporter forms the central part of the major histocompatibility complex class I (MHC I) peptide-loading machinery. Hence, TAP is confronted with a number of viral factors, which prevent antigen translocation and MHC I loading in virally infected cells. We review how these viral factors have been used as molecular tools to decipher mechanistic aspects of solute translocation and discuss how they can help in the structural analysis of TAP.  相似文献   

11.
Malaria, caused by Plasmodia parasites, affects hundreds of millions of people. As purine auxotrophs, Plasmodia use transporters to import host purines for subsequent metabolism by the purine salvage pathway. Thus purine transporters are attractive drug targets. All sequenced Plasmodia genomes encode four ENTs (equilibrative nucleoside transporters). During the pathogenic intraerythrocytic stages, ENT1 is a major route of purine nucleoside/nucleobase transport. Another plasma membrane purine transporter exists because Plasmodium falciparum ENT1-knockout parasites survive at supraphysiological purine concentrations. The other three ENTs have not been characterized functionally. Codon-optimized Pf- (P. falciparum) and Pv- (Plasmodium vivax) ENT4 were expressed in Xenopus laevis oocytes and substrate transport was determined with radiolabelled substrates. ENT4 transported adenine and 2'-deoxyadenosine at the highest rate, with millimolar-range apparent affinity. ENT4-expressing oocytes did not accumulate hypoxanthine, a key purine salvage pathway substrate, or AMP. Micromolar concentrations of the plant hormone cytokinin compounds inhibited both PfENT4 and PvENT4. In contrast with PfENT1, ENT4 interacted with the immucillin compounds in the millimolar range and was inhibited by 10?μM dipyridamole. Thus ENT4 is a purine transporter with unique substrate and inhibitor specificity. Its role in parasite physiology remains uncertain, but is likely to be significant because of the strong conservation of ENT4 homologues in Plasmodia genomes.  相似文献   

12.
13.
14.
15.
Despite their unparalleled catalytic prowess and environmental compatibility, enzymes have yet to see widespread application in synthetic chemistry. This lack of application and the resulting underuse of their enormous potential stems not only from a wariness about aqueous biological catalysis on the part of the typical synthetic chemist but also from limitations on enzyme applicability that arise from the high degree of substrate specificity possessed by most enzymes. This latter perceived limitation is being successfully challenged through rational protein engineering and directed evolution efforts to alter substrate specificity. However, such programs require considerable effort to establish. Here we report an alternative strategy for expanding the substrate specificity, and therefore the synthetic utility, of a given enzyme through a process of "substrate engineering". The attachment of a readily removable functional group to an alternative glycosyltransferase substrate induces a productive binding mode, facilitating rational control of substrate specificity and regioselectivity using wild-type enzymes.  相似文献   

16.
Morris ME  Zhang S 《Life sciences》2006,78(18):2116-2130
Flavonoids are present in fruits, vegetables and beverages derived from plants (tea, red wine), and in many dietary supplements or herbal remedies including Ginkgo Biloba, Soy Isoflavones, and Milk Thistle. Flavonoids have been described as health-promoting, disease-preventing dietary supplements, and a high intake of flavonoids has been associated with a reduced risk of cancer, cardiovascular diseases, osteoporosis and other age-related degenerative diseases. Due to an increased public interest in alternative medicine and disease prevention, the use of herbal preparations containing high doses of flavonoids for health maintenance has become very popular, raising the potential for interactions with conventional drug therapies. This review will summarize the current literature regarding the interactions of flavonoids with ATP-binding cassette (ABC) efflux transporters, mainly P-glycoprotein, MRP1, MRP2 and BCRP and discuss the potential consequences for flavonoid-drug transport interactions.  相似文献   

17.
In recent years, our understanding of the functioning of ABC (ATP-binding cassette) systems has been boosted by the combination of biochemical and structural approaches. However, the origin and the distribution of ABC proteins among living organisms are difficult to understand in a phylogenetic perspective, because it is hard to discriminate orthology and paralogy, due to the existence of horizontal gene transfer. In this chapter, I present an update of the classification of ABC systems and discuss a hypothetical scenario of their evolution. The hypothetical presence of ABC ATPases in the last common ancestor of modern organisms is discussed, as well as the additional possibility that ABC systems might have been transmitted to eukaryotes, after the two endosymbiosis events that led to the constitution of eukaryotic organelles. I update the functional information of selected ABC systems and introduce new families of ABC proteins that have been included recently into this vast superfamily, thanks to the availability of high-resolution three-dimensional structures.  相似文献   

18.
ABC A-subfamily transporters: structure, function and disease   总被引:7,自引:0,他引:7  
ABC transporters constitute a family of evolutionarily highly conserved multispan proteins that mediate the translocation of defined substrates across membrane barriers. Evidence has accumulated during the past years to suggest that a subgroup of 12 structurally related "full-size" transporters, referred to as ABC A-subfamily transporters, mediates the transport of a variety of physiologic lipid compounds. The emerging importance of ABC A-transporters in human disease is reflected by the fact that as yet four members of this protein family (ABCA1, ABCA3, ABCR/ABCA4, ABCA12) have been causatively linked to completely unrelated groups of monogenetic disorders including familial high-density lipoprotein (HDL) deficiency, neonatal surfactant deficiency, degenerative retinopathies and congenital keratinization disorders. Although the biological function of the remaining 8 ABC A-transporters currently awaits clarification, they represent promising candidate genes for a presumably equally heterogenous group of Mendelian diseases associated with perturbed cellular lipid transport. This review summarizes our current knowledge on the role of ABC A-subfamily transporters in physiology and disease and explores clinical entities which may be potentially associated with dysfunctional members of this gene subfamily.  相似文献   

19.
This chapter concentrates mainly on structural and mechanistic aspects of ABC (ATP-binding cassette) transporters and, as an example of the physiological significance of these proteins, on lipid transport, vitally important for human health. The chapter considers those aspects of ABC transporter function that appear reasonably well established, those that remain controversial and what appear to be emerging themes. Although we have seen dramatic progress in ABC protein studies in the last 20 years, we are still far from a detailed molecular understanding of function. Nevertheless two critical steps - capture and release of allocrites (transport substrates) involving a binding cavity in the membrane domain, and hydrolysis of ATP by the NBD (nucleotide-binding domain) dimer - are now described by persuasive and testable models: alternating access, and sequential firing of catalysis sites respectively. However, these need to be tested rigorously by more structural and biochemical studies. Other aspects considered include the level at which ATP binding and dimer activation are controlled, the nature of the power stroke delivering mechanical energy for transport, and some unexpected and intriguing differences between importers and exporters. The chapter also emphasizes that some ABC transporters, although important for elimination of toxic compounds (xenobiotics), are also increasingly seen to play crucial roles in homoeostatic regulation of membrane biogenesis and function through translocation of endogenous allocrites such as cholesterol. Another emerging theme is the identification of accessory domains and partners for ABC proteins, resulting in a corresponding widening of the range of activities. Finally, what are the prospects for translational research and ABC transporters?  相似文献   

20.
Nowotny M  Gaidamakov SA  Crouch RJ  Yang W 《Cell》2005,121(7):1005-1016
RNase H belongs to a nucleotidyl-transferase superfamily, which includes transposase, retroviral integrase, Holliday junction resolvase, and RISC nuclease Argonaute. We report the crystal structures of RNase H complexed with an RNA/DNA hybrid and a mechanism for substrate recognition and two-metal-ion-dependent catalysis. RNase H specifically recognizes the A form RNA strand and the B form DNA strand. Structure comparisons lead us to predict the catalytic residues of Argonaute and conclude that two-metal-ion catalysis is a general feature of the superfamily. In nucleases, the two metal ions are asymmetrically coordinated and have distinct roles in activating the nucleophile and stabilizing the transition state. In transposases, they are symmetrically coordinated and exchange roles to alternately activate a water and a 3'-OH for successive strand cleavage and transfer by a ping-pong mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号