首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
How can changes in growth rate affect the regulatory networks behavior and the outcomes of cellular differentiation? We address this question by focusing on starvation response in sporulating Bacillus subtilis. We show that the activity of sporulation master regulator Spo0A increases with decreasing cellular growth rate. Using a mathematical model of the phosphorelay—the network controlling Spo0A—we predict that this increase in Spo0A activity can be explained by the phosphorelay protein accumulation and lengthening of the period between chromosomal replication events caused by growth slowdown. As a result, only cells growing slower than a certain rate reach threshold Spo0A activity necessary for sporulation. This growth threshold model accurately predicts cell fates and explains the distribution of sporulation deferral times. We confirm our predictions experimentally and show that the concentration rather than activity of phosphorelay proteins is affected by the growth slowdown. We conclude that sensing the growth rates enables cells to indirectly detect starvation without the need for evaluating specific stress signals.  相似文献   

8.
The two-component phosphorelay system is the most prevalent mechanism for sensing and transducing environmental signals in bacteria. Spore formation, which relies on the two-component phosphorelay system, enables the long-term survival of the glacial bacterium Paenisporosarcina sp. TG-14 in the extreme cold environment. Spo0A is a key response regulator of the phosphorelay system in the early stage of spore formation. The protein is composed of a regulatory N-terminal phospho-receiver domain and a DNA-binding C-terminal activator domain. We solved the three-dimensional structure of the unphosphorylated (inactive) form of the receiver domain of Spo0A (PaSpo0A-R) from Paenisporosarcina sp. TG-14. A structural comparison with phosphorylated (active form) Spo0A from Bacillus stearothermophilus (BsSpo0A) showed minor notable differences. A molecular dynamics study of a model of the active form and the crystal structures revealed significant differences in the α4 helix and the preceding loop region where phosphorylation occurs. Although an oligomerization study of PaSpo0A-R by analytical ultracentrifugation (AUC) has shown that the protein is in a monomeric state in solution, both crosslinking and crystal-packing analyses indicate the possibility of weak dimer formation by a previously undocumented mechanism. Collectively, these observations provide insight into the mechanism of phosphorylation-dependent activation unique to Spo0A.  相似文献   

9.
10.
11.
12.
13.
In starving Bacillus subtilis cells, the accDA operon encoding two subunits of the essential acetyl‐CoA carboxylase (ACC) has been proposed to be tightly regulated by direct binding of the master regulator Spo0A to a cis element (0A box) in the promoter region. When the 0A box is mutated, biofilm formation and sporulation have been reported to be impaired. Here, we present evidence that two 0A boxes, one previously known (0A‐1) and another newly discovered (0A‐2) in the accDA promoter region are positively and negatively regulated by Spo0A~P respectively. Cells with mutated 0A boxes experience slight delays in sporulation, but eventually sporulate with high efficiency. In contrast, cells harboring a single mutated 0A‐2 box are deficient for biofilm formation, while cells harboring either a mutated 0A‐1 box or both mutated 0A boxes form biofilms. We further show that the essential ACC enzyme localizes on or near the cell membrane by directly observing a functional GFP fusion to one of the enzyme's subunits. Collectively, we propose a revised model in which accDA is primarily transcribed by a major σA‐RNA polymerase, while Spo0A~P plays an additional role in the fine‐tuning of accDA expression upon starvation to support proper biofilm formation and sporulation.  相似文献   

14.
15.
Sporulation by Bacillus subtilis is a cell density-dependent response to nutrient deprivation. Central to the decision of entering sporulation is a phosphorelay, through which sensor kinases promote phosphorylation of Spo0A. The phosphorelay integrates both positive and negative signals, ensuring that sporulation, a time- and energy-consuming process that may bring an ecological cost, is only triggered should other adaptations fail. Here we report that a gastrointestinal isolate of B. subtilis sporulates with high efficiency during growth, bypassing the cell density, nutritional, and other signals that normally make sporulation a post-exponential-phase response. Sporulation during growth occurs because Spo0A is more active per cell and in a higher fraction of the population than in a laboratory strain. This in turn, is primarily caused by the absence from the gut strain of the genes rapE and rapK, coding for two aspartyl phosphatases that negatively modulate the flow of phosphoryl groups to Spo0A. We show, in line with recent results, that activation of Spo0A through the phosphorelay is the limiting step for sporulation initiation in the gut strain. Our results further suggest that the phosphorelay is tuned to favor sporulation during growth in gastrointestinal B. subtilis isolates, presumably as a form of survival and/or propagation in the gut environment.  相似文献   

16.
17.
Room temperature sodium–sulfur batteries have emerged as promising candidate for application in energy storage. However, the electrodes are usually obtained through infusing elemental sulfur into various carbon sources, and the precipitation of insoluble and irreversible sulfide species on the surface of carbon and sodium readily leads to continuous capacity degradation. Here, a novel strategy is demonstrated to prepare a covalent sulfur–carbon complex (SC‐BDSA) with high covalent‐sulfur concentration (40.1%) that relies on ? SO3H (Benzenedisulfonic acid, BDSA) and SO42? as the sulfur source rather than elemental sulfur. Most of the sulfur is exists in the form of O? S/C? S bridge‐bonds (short/long‐chain) whose features ensure sufficient interfacial contact and maintain high ionic/electronic conductivities of the sulfur–carbon cathode. Meanwhile, the carbon mesopores resulting from the thermal‐treated salt bath can confine a certain amount of sulfur and localize the diffluent polysulfides. Furthermore, the C? Sx? C bridges can be electrochemically broken at lower potential (<0.6 V vs Na/Na+) and then function as a capacity sponsor. And the R‐SO units can anchor the initially generated Sx2? to form insoluble surface‐bound intermediates. Thus SC‐BDSA exhibits a specific capacity of 696 mAh g?1 at 2500 mA g?1 and excellent cycling stability for 1000 cycles with 0.035% capacity decay per cycle.  相似文献   

18.
Aims: Investigating mechanisms of lethality enhancement when Escherichia coli O157:H7, and selected E. coli mutants, were exposed to tert‐butylhydroquinone (TBHQ) during ultra‐high pressure (UHP) treatment. Methods and Results: Escherichia coli O157:H7 EDL‐933, and 14 E. coli K12 strains with mutations in selected genes, were treated with dimethyl sulfoxide solution of TBHQ (15–30 ppm), and processed with UHP (400 MPa, 23 ± 2°C for 5 min). Treatment of wild‐type E. coli strains with UHP alone inactivated 2·4–3·7 log CFU ml?1, whereas presence of TBHQ increased UHP lethality by 1·1–6·2 log CFU ml?1; TBHQ without pressure was minimally lethal (0–0·6 log reduction). Response of E. coli K12 mutants to these treatments suggests that iron–sulfur cluster‐containing proteins ([Fe–S]‐proteins), particularly those related to the sulfur mobilization (SUF system), nitrate metabolism, and intracellular redox potential, are critical to the UHP–TBHQ synergy against E. coli. Mutations in genes maintaining redox homeostasis and anaerobic metabolism were associated with UHP–TBHQ resistance. Conclusions: The redox cycling activity of cellular [Fe–S]‐proteins may oxidize TBHQ, potentially leading to the generation of bactericidal reactive oxygen species. Significance and Impact of the Study: A mechanism is proposed for the enhanced lethality of UHP by TBHQ against E. coli O157:H7. The results may benefit food processors using UHP–based preservation, and biologists interested in piezophilic micro‐organisms.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号