首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell division must only occur once daughter chromosomes have been fully separated. However, the initiating event of bacterial cell division, assembly of the FtsZ ring, occurs while chromosome segregation is still ongoing. We show that a two-step DNA translocase system exists in Bacillus subtilis that couples chromosome segregation and cell division. The membrane-bound DNA translocase SpoIIIE assembled very late at the division septum, and only upon entrapment of DNA, while its orthologue, SftA (YtpST), assembled at each septum in B. subtilis soon after FtsZ. Lack of SftA resulted in a moderate segregation defect at a late stage in the cell cycle. Like the loss of SpoIIIE, the absence of SftA was deleterious for the cells during conditions of defective chromosome segregation, or after induction of DNA damage. Lack of both proteins exacerbated all phenotypes. SftA forms soluble hexamers in solution, binds to DNA and has DNA-dependent ATPase activity, which is essential for its function in vivo . Our data suggest that SftA aids in moving DNA away from the closing septum, while SpoIIIE translocates septum-entrapped DNA only when septum closure precedes complete segregation of chromosomes.  相似文献   

2.
DNA translocases play important roles during the bacterial cell cycle and in cell differentiation. Escherichia coli cells contain a multifunctional translocase, FtsK, which is involved in cell division, late steps of chromosome segregation and dimer resolution. In Gram-positive bacteria, the latter two processes are achieved by two translocases, SftA and SpoIIIE. These two translocases operate in a two step fashion, before and after closure of the division septum. DNA translocases have the remarkable ability to translocate DNA in a vectorial manner, orienting themselves according to polar sequences present in bacterial genomes, and perform various additional roles during the cell cycle. DNA translocases genetically interact with Structural Maintenance of Chromosomes (SMC) proteins in a flexible manner in different species, underlining the high versatility of this class of proteins.  相似文献   

3.
In bacteria, septum formation frequently initiates before the last steps of chromosome segregation. This is notably the case when chromosome dimers are formed by homologous recombination. Chromosome segregation then requires the activity of a double‐stranded DNA transporter anchored at the septum by an integral membrane domain, FtsK. It was proposed that the transmembrane segments of proteins of the FtsK family form pores across lipid bilayers for the transport of DNA. Here, we show that truncated Escherichia coli FtsK proteins lacking all of the FtsK transmembrane segments allow for the efficient resolution of chromosome dimers if they are connected to a septal targeting peptide through a sufficiently long linker. These results indicate that FtsK does not need to transport DNA through a pore formed by its integral membrane domain. We propose therefore that FtsK transports DNA before membrane fusion, at a time when there is still an opening in the constricted septum.  相似文献   

4.
In several bacterial species, the faithful completion of chromosome partitioning is known to be promoted by a conserved family of DNA translocases that includes Escherichia coli FtsK and Bacillus subtilis SpoIIIE. FtsK localizes at nascent division sites during every cell cycle and stimulates chromosome decatenation and the resolution of chromosome dimers formed by recA -dependent homologous recombination. In contrast, SpoIIIE localizes at sites where cells have divided and trapped chromosomal DNA in the membrane, which happens during spore development and under some conditions when DNA replication is perturbed. SpoIIIE completes chromosome segregation post-septationally by translocating trapped DNA across the membrane. Unlike E. coli , B. subtilis contains a second uncharacterized FtsK/SpoIIIE-like protein, SftA (formerly YtpS). We report that SftA plays a role similar to FtsK during each cell cycle but cannot substitute for SpoIIIE in rescuing trapped chromosomes. SftA colocalizes with FtsZ at nascent division sites but not with SpoIIIE at sites of chromosome trapping. SftA mutants divide over unsegregated chromosomes more frequently than wild-type unless recA is inactivated, suggesting that SftA, like FtsK, stimulates chromosome dimer resolution. Having two FtsK/SpoIIIE paralogues is not conserved among endospore-forming bacteria, but is highly conserved within several groups of soil- and plant-associated bacteria.  相似文献   

5.
FtsK, a literate chromosome segregation machine   总被引:6,自引:3,他引:3  
  相似文献   

6.
FtsK is a prokaryotic multidomain DNA translocase that coordinates chromosome segregation and cell division. FtsK is membrane anchored at the division septum and, guided by highly skewed DNA sequences, translocates the chromosome to bring the terminus of replication to the septum. Here, we use in vitro single-molecule and ensemble methods to unveil a mechanism of action in which the translocation and sequence-recognition activities are performed by different domains in FtsK.  相似文献   

7.
FtsK translocates dsDNA directionally at >5 kb/s, even under strong forces. In vivo, the action of FtsK at the bacterial division septum is required to complete the final stages of chromosome unlinking and segregation. Despite the availability of translocase structures, the mechanism by which ATP hydrolysis is coupled to DNA translocation is not understood. Here, we use covalently linked translocase subunits to gain insight into the DNA translocation mechanism. Covalent trimers of wild‐type subunits dimerized efficiently to form hexamers with high translocation activity and an ability to activate XerCD‐dif chromosome unlinking. Covalent trimers with a catalytic mutation in the central subunit formed hexamers with two mutated subunits that had robust ATPase activity. They showed wild‐type translocation velocity in single‐molecule experiments, activated translocation‐dependent chromosome unlinking, but had an impaired ability to displace either a triplex oligonucleotide, or streptavidin linked to biotin‐DNA, during translocation along DNA. This separation of translocation velocity and ability to displace roadblocks is more consistent with a sequential escort mechanism than stochastic, hand‐off, or concerted mechanisms.  相似文献   

8.
Escherichia coli FtsK is a powerful, fast, double-stranded DNA translocase, which can strip proteins from DNA. FtsK acts in the late stages of chromosome segregation by facilitating sister chromosome unlinking at the division septum. KOPS-guided DNA translocation directs FtsK towards dif, located within the replication terminus region, ter, where FtsK activates XerCD site-specific recombination. Here we show that FtsK translocation stops specifically at XerCD-dif, thereby preventing removal of XerCD from dif and allowing activation of chromosome unlinking by recombination. Stoppage of translocation at XerCD-dif is accompanied by a reduction in FtsK ATPase and is not associated with FtsK dissociation from DNA. Specific stoppage at recombinase-DNA complexes does not require the FtsKγ regulatory subdomain, which interacts with XerD, and is not dependent on either recombinase-mediated DNA cleavage activity, or the formation of synaptic complexes.  相似文献   

9.
Burton BM  Marquis KA  Sullivan NL  Rapoport TA  Rudner DZ 《Cell》2007,131(7):1301-1312
The FtsK/SpoIIIE family of ATP-dependent DNA transporters mediates proper chromosome segregation in dividing bacteria. In sporulating Bacillus subtilis cells, SpoIIIE translocates much of the circular chromosome from the mother cell into the forespore, but the molecular mechanism remains unclear. Using a new assay to monitor DNA transport, we demonstrate that the two arms of the chromosome are simultaneously pumped into the forespore. Up to 70 molecules of SpoIIIE are recruited to the site of DNA translocation and assemble into complexes that could contain 12 subunits. The fusion of the septal membranes during cytokinesis precedes DNA translocation and does not require SpoIIIE, as suggested by analysis of lipid dynamics, serial thin-section electron microscopy, and cell separation by protoplasting. These data support a model for DNA transport in which the transmembrane segments of FtsK/SpoIIIE form linked DNA-conducting channels across the two lipid bilayers of the septum.  相似文献   

10.
FtsK and SpoIIIE: the tale of the conserved tails   总被引:2,自引:1,他引:1  
During Bacillus subtilis sporulation, the SpoIIIE DNA translocase moves a trapped chromosome across the sporulation septum into the forespore. The preferential assembly of SpoIIIE complexes in the mother cell provided the idea that SpoIIIE functioned as a DNA exporter, which ensured translocation orientation. In this issue of Molecular Microbiology, Becker and Pogliano reinvestigate the molecular mechanisms that orient the activity of SpoIIIE. Their findings indicate that SpoIIIE reads the polarity of DNA like its Escherichia coli homologue, FtsK.  相似文献   

11.
The bacterial septum-located DNA translocase FtsK coordinates circular chromosome segregation with cell division. Rapid translocation of DNA by FtsK is directed by 8-base-pair DNA motifs (KOPS), so that newly replicated termini are brought together at the developing septum, thereby facilitating completion of chromosome segregation. Translocase functions reside in three domains, alpha, beta and gamma. FtsKalphabeta are necessary and sufficient for ATP hydrolysis-dependent DNA translocation, which is modulated by FtsKgamma through its interaction with KOPS. By solving the FtsKgamma structure by NMR, we show that gamma is a winged-helix domain. NMR chemical shift mapping localizes the DNA-binding site on the gamma domain. Mutated proteins with substitutions in the FtsKgamma DNA-recognition helix are impaired in DNA binding and KOPS recognition, yet remain competent in DNA translocation and XerCD-dif site-specific recombination, which facilitates the late stages of chromosome segregation.  相似文献   

12.
The DNA translocase function of Bacillus subtilis SpoIIIE is essential for spore development and is important during vegetative growth for moving trapped chromosomal DNA away from division septa. Two papers in this issue of Molecular Microbiology , from the teams of Peter Graumann and William Burkholder, have characterized a second SpoIIIE/FtsK-like protein in B. subtilis , SftA. This protein lacks any recognizable transmembrane domain possessed by the other characterized members of the family, yet the protein is shown to be associated with the division septum and, like SpoIIIE, is required for clearing DNA from the septum. However, SftA and SpoIIIE act at different stages of septation and together they ensure maximum fidelity in chromosome segregation.  相似文献   

13.
In most bacteria two vital processes of the cell cycle: DNA replication and chromosome segregation overlap temporally. The action of replication machinery in a fixed location in the cell leads to the duplication of oriC regions, their rapid separation to the opposite halves of the cell and the duplicated chromosomes gradually moving to the same locations prior to cell division. Numerous proteins are implicated in co-replicational DNA segregation and they will be characterized in this review. The proteins SeqA, SMC/MukB, MinCDE, MreB/Mbl, RacA, FtsK/SpoIIIE playing different roles in bacterial cells are also involved in chromosome segregation. The chromosomally encoded ParAB homologs of active partitioning proteins of low-copy number plasmids are also players, not always indispensable, in the segregation of bacterial chromosomes.  相似文献   

14.
SpoIIIE/FtsK ATPases are central players in bacterial chromosome segregation. It remains unclear how these DNA translocases harness chemical energy (ATP turnover) to perform mechanical work (DNA movement). Bacillus subtilis sporulation provides a dramatic example of intercompartmental DNA transport, in which SpoIIIE moves 70% of the chromosome across the division plane. To understand the mechanistic requirements for DNA translocation, we investigated the DNA translocation defect of a classical nontranslocating allele, spoIIIE36. We found that the translocation phenotype is caused by a single substitution, a change of valine to methionine at position 429 (V429M), within the motor of SpoIIIE. This substitution is located at the base of a hinge between the RecA-like β domain and the α domain, which is a domain unique to the SpoIIIE/FtsK family and currently has no known function. V429M interferes with both protein-DNA interactions and oligomer assembly. These mechanistic defects disrupt coordination between ATP turnover and DNA interaction, effectively uncoupling ATP hydrolysis from DNA movement. Our data provide the first functional evidence for the importance of the hinge in DNA translocation.  相似文献   

15.
Over a decade of studies have tackled the question of how FtsK/SpoIIIE translocases establish and maintain directional DNA translocation during chromosome segregation in bacteria. FtsK/SpoIIIE translocases move DNA in a highly processive, directional manner, where directionality is facilitated by sequences on the substrate DNA molecules that are being transported. In recent years, structural, biochemical, single‐molecule and high‐resolution microscopic studies have provided new insight into the mechanistic details of directional DNA segregation. Out of this body of work, a series of models have emerged and, ultimately, yielded two seemingly opposing models: the loading model and the target search model. We review these recent mechanistic insights into directional DNA movement and discuss the data that may serve to unite these suggested models, as well as propose future directions that may ultimately solve the debate.  相似文献   

16.
Bacterial cell division and the septal ring   总被引:16,自引:0,他引:16  
Cell division in bacteria is mediated by the septal ring, a collection of about a dozen (known) proteins that localize to the division site, where they direct assembly of the division septum. The foundation of the septal ring is a polymer of the tubulin-like protein FtsZ. Recently, experiments using fluorescence recovery after photobleaching have revealed that the Z ring is extremely dynamic. FtsZ subunits exchange in and out of the ring on a time scale of seconds even while the overall morphology of the ring appears static. These findings, together with in vitro studies of purified FtsZ, suggest that the rate-limiting step in turnover of FtsZ polymers is GTP hydrolysis. Another component of the septal ring, FtsK, is involved in coordinating chromosome segregation with cell division. Recent studies have revealed that FtsK is a DNA translocase that facilitates decatenation of sister chromosomes by TopIV and resolution of chromosome dimers by the XerCD recombinase. Finally, two murein hydrolases, AmiC and EnvC, have been shown to localize to the septal ring of Escherichia coli, where they play an important role in separation of daughter cells.  相似文献   

17.
Escherichia coli FtsK is a multifunctional protein that couples cell division and chromosome segregation. Its N-terminal transmembrane domain (FtsK(N)) is essential for septum formation, whereas its C-terminal domain (FtsK(C)) is required for chromosome dimer resolution by XerCD-dif site-specific recombination. FtsK(C) is an ATP-dependent DNA translocase. In vitro and in vivo data point to a dual role for this domain in chromosome dimer resolution (i) to directly activate recombination by XerCD-dif and (ii) to bring recombination sites together and/or to clear DNA from the closing septum. FtsK(N) and FtsK(C) are separated by a long linker region (FtsK(L)) of unknown function that is highly divergent between bacterial species. Here, we analysed the in vivo effects of deletions of FtsK(L) and/or of FtsK(C), of swaps of these domains with their Haemophilus influenzae counterparts and of a point mutation that inactivates the walker A motif of FtsK(C). Phenotypic characterization of the mutants indicated a role for FtsK(L) in cell division. More importantly, even though Xer recombination activation and DNA mobilization both rely on the ATPase activity of FtsK(C), mutants were found that can perform only one or the other of these two functions, which allowed their separation in vivo for the first time.  相似文献   

18.
DNA pumps play important roles in bacteria during cell division and during the transfer of genetic material by conjugation and transformation. The FtsK/SpoIIIE proteins carry out the translocation of double-stranded DNA to ensure complete chromosome segregation during cell division. In contrast, the complex molecular machines that mediate conjugation and genetic transformation drive the transport of single stranded DNA. The transformation machine also processes this internalized DNA and mediates its recombination with the resident chromosome during and after uptake, whereas the conjugation apparatus processes DNA before transfer. This article reviews these three types of DNA pumps, with attention to what is understood of their molecular mechanisms, their energetics and their cellular localizations.The transport of DNA across membranes by bacteria occurs during sporulation, during cytokinesis, directly from other cells and from the environment. This review addresses the question “how is the DNA polyanion transferred processively across the hydrophobic membrane barrier”?DNA transport must occur through water-filled channels, at least conceptually addressing the problem posed by the hydrophobic membrane. DNA transporters presumably use metabolic energy directly or a coupled-flow (symporter or antiporter) mechanism to drive DNA processively through the channel. It is possible that a Brownian ratchet mechanism, in which directionality is imposed on a diffusive process, also contributes to transport.In this article, we will consider several DNA transport systems. We will begin with the simplest one, namely the FtsK/SpoIIIE system that is involved in cell division and sporulation. We will then turn to the more complex, multiprotein DNA uptake systems that accomplish genetic transformation (the uptake of environmental DNA from the environment) and the conjugation systems of Gram-negative bacteria that mediate the unidirectional transfer of DNA between cells. In each case we will discuss the proteins involved, their actions and the sources of energy that drive transport. Space limitations prevent discussion of other relevant topics, such as DNA transport during bacteriophage infection and more than a brief reference to conjugation in Gram-positive bacteria.  相似文献   

19.
A new Escherichia coli cell division gene, ftsK.   总被引:5,自引:1,他引:4       下载免费PDF全文
A mutation in a newly discovered Escherichia coli cell division gene, ftsK, causes a temperature-sensitive late-stage block in division but does not affect chromosome replication or segregation. This defect is specifically suppressed by deletion of dacA, coding for the peptidoglycan DD-carboxypeptidase, PBP 5. FtsK is a large polypeptide (147 kDa) consisting of an N-terminal domain with several predicted membrane-spanning regions, a proline-glutamine-rich domain, and a C-terminal domain with a nucleotide-binding consensus sequence. FtsK has extensive sequence identity with a family of proteins from a wide variety of prokaryotes and plasmids. The plasmid proteins are required for intercellular DNA transfer, and one of the bacterial proteins (the SpoIIIE protein of Bacillus subtilis) has also been implicated in intracellular chromosomal DNA transfer.  相似文献   

20.
In Escherichia coli, the ATP-dependent DNA translocase FtsK transports DNA across the site of cell division and activates recombination by the XerCD recombinases at a specific site on the chromosome, dif, to ensure the last stages of chromosome segregation. DNA transport by FtsK is oriented by 8-base-pair asymmetric sequences ('KOPS'). Here we provide evidence that KOPS promote FtsK loading on DNA and that translocation is oriented at this step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号