首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial biofilm formation causes serious problems in various fields of medical, clinical, and industrial settings. Antibiotics and biocide treatments are typical methods used to remove bacterial biofilms, but biofilms are difficult to remove effectively from surfaces due to their increased resistance. An alternative approach to treatment with antimicrobial agents is using biofilm inhibitors that regulate biofilm development without inhibiting bacterial growth. In the present study, we found that linoleic acid (LA), a plant unsaturated fatty acid, inhibits biofilm formation under static and continuous conditions without inhibiting the growth of Pseudomonas aeruginosa. LA also influenced the bacterial motility, extracellular polymeric substance production, and biofilm dispersion by decreasing the intracellular cyclic diguanylate concentration through increased phosphodiesterase activity. Furthermore, quantitative gene expression analysis demonstrated that LA induced the expression of genes associated with diffusible signaling factor‐mediated quorum sensing that can inhibit or induce the dispersion of P. aeruginosa biofilms. These results suggest that LA is functionally and structurally similar to a P. aeruginosa diffusible signaling factor (cis‐2‐decenoic acid) and, in turn, act as an agonist molecule in biofilm dispersion.  相似文献   

2.
Bacterial motilities participate in biofilm development. However, it is unknown how/if bacterial motility affects formation of the biofilm matrix. Psl polysaccharide is a key biofilm matrix component of Pseudomonas aeruginosa. Here we report that type IV pili (T4P)‐mediated bacterial migration leads to the formation of a fibre‐like Psl matrix. Deletion of T4P in wild type and flagella‐deficient strains results in loss of the Psl‐fibres and reduction of biofilm biomass in flow cell biofilms as well as pellicles at air‐liquid interface. Bacteria lacking T4P‐driven twitching motility including those that still express surface T4P are unable to form the Psl‐fibres. Formation of a Psl‐fibre matrix is critical for efficient biofilm formation, yet does not require flagella and polysaccharide Pel or alginate. The Psl‐fibres are likely formed by Psl released from bacteria during T4P‐mediated migration, a strategy similar to spider web formation. Starvation can couple Psl release and T4P‐driven twitching motility. Furthermore, a radial‐pattern Psl‐fibre matrix is present in the middle of biofilms, a nutrient‐deprived region. These imply a plausible model for how bacteria respond to nutrient‐limited local environment to build a polysaccharide‐fibre matrix by T4P‐dependent bacterial migration strategy. This strategy may have general significance for bacterial survival in natural and clinical settings.  相似文献   

3.
4.
Aims: The purpose of this study was to evaluate the antimicrobial efficacy of thirteen bismuth thiol preparations for bactericidal activity against established biofilms formed by two bacteria isolated from human chronic wounds. Methods: Single species biofilms of a Pseudomonas aeruginosa or a methicillin‐resistant Staphylococcus aureus were grown in either colony biofilm or drip‐flow reactors systems. Biofilms were challenged with bismuth thiols, antibiotics or silver sulfadiazine, and log reductions were determined by plating for colony formation. Conclusions: Antibiotics were ineffective or inconsistent against biofilms of both bacterial species tested. None of the antibiotics tested were able to achieve >2 log reductions in both biofilm models. The 13 different bismuth thiols tested in this investigation achieved widely varying degrees of killing, even against the same micro‐organism in the same biofilm model. For each micro‐organism, the best bismuth thiol easily outperformed the best conventional antibiotic. Against P. aeruginosa biofilms, bismuth‐2,3‐dimercaptopropanol (BisBAL) at 40–80 μg ml?1 achieved >7·7 mean log reduction for the two biofilm models. Against MRSA biofilms, bismuth‐1,3‐propanedithiol/bismuth‐2‐mercaptopyridine N‐oxide (BisBDT/PYR) achieved a 4·9 log reduction. Significance and Impact of the Study: Bismuth thiols are effective antimicrobial agents against biofilms formed by wound bacteria and merit further development as topical antiseptics for the suppression of biofilms in chronic wounds.  相似文献   

5.
6.
In chronic wounds, it may be clinically important to remove extracellular bacterial and patient DNA as its presence may impede wound healing and promote bacterial survival in biofilm, in which extracellular DNA forms part of the biofilm architecture. As medicinal maggots, larvae of Lucilia sericata Meigen (Diptera: Calliphoridae) have been shown to efficiently debride wounds it became of interest to investigate their excretions/secretions (ES) for the presence of a deoxyribonuclease (DNAse) activity. Excretions/secretions products were shown to contain a DNAse, with magnesium, sodium and calcium metal ion dependency, and a native molecular mass following affinity purification of approximately 45 kDa. The affinity purified DNAse degraded genomic bacterial DNA per se, DNA from the slough/eschar of a venous leg ulcer, and extracellular bacterial DNA in biofilms pre‐formed from a clinical isolate of Pseudomonas aeruginosa. The latter finding highlights an important attribute of the DNAse, given the frequency of P. aeruginosa infection in non‐healing wounds and the fact that P. aeruginosa virulence factors can be toxic to maggots. Maggot DNAse is thus a competent enzyme derived from a rational source, with the potential to assist in clinical wound debridement by removing extracellular DNA from tissue and biofilm, and promoting tissue viability, while liberating proteinaceous slough/eschar for debridement by the suite of proteinases secreted by L. sericata.  相似文献   

7.
Cohesive strength is an important parameter for understanding and modeling the mechanics of biomass detachment from bacterial biofilms. It is challenging to measure the mechanical properties of biofilms, however, because biofilms may desiccate when removed from liquid medium and they are inherently fragile. Poppele and Hozalski (Poppele and Hozalski, 2003, J Microb Methods 55:607–615) presented a microcantilever method for measuring the tensile strength of detached biofilm fragments while submersed in liquid medium. Here we present a modification of the microcantilever method to quantify the strength of intact bacterial biofilms. Initial testing was performed on Pseudomonas aeruginosa biofilms and on Staphylococcus epidermidis biofilms grown in rotating disk reactors. The cohesive strength values were highly variable (i.e., coefficients of variation ranging from 71% to 143%) and ranged from 59 to 18,900 Pa for the P. aeruginosa biofilms and from 61 to 5,840 Pa for the S. epidermidis biofilms. The biofilms also appeared to be isotropic as strength did not vary with angle of testing relative to the direction of applied shear. Strength testing using both the intact and fragment methods was performed on five samples of P. aeruginosa biofilms, and the strength populations were not from the same distribution in three cases. Equivalent diameters for the fragments detached from biofilms during strength testing ranged from 5 to 500 µm, which is within the range of size of biofilm fragments observed in the effluents of lab‐scale and full‐scale bioreactors. The microcantilever is a simple yet powerful tool for measuring the cohesive strength of intact biofilms at a relevant scale. Biotechnol. Bioeng. 2010;105: 924–934. © 2009 Wiley Periodicals, Inc.  相似文献   

8.
Bacterial biofilm development is conditioned by complex processes involving bacterial attachment to surfaces, growth, mobility, and exoproduct production. The marine bacterium Pseudoalteromonas sp. strain D41 is able to attach strongly onto a wide variety of substrates, which promotes subsequent biofilm development. Study of the outer‐membrane and total soluble proteomes showed ten spots with significant intensity variations when this bacterium was grown in biofilm compared to planktonic cultures. MS/MS de novo sequencing analysis allowed the identification of four outer‐membrane proteins of particular interest since they were strongly induced in biofilms. These proteins are homologous to a TonB‐dependent receptor (TBDR), to the OmpW and OmpA porins, and to a type IV pilus biogenesis protein (PilF). Gene expression assays by quantitative RT‐PCR showed that the four corresponding genes were upregulated during biofilm development on hydrophobic and hydrophilic surfaces. The Pseudomonas aeruginosa mutants unable to produce any of the OmpW, OmpA, and PilF homologues yielded biofilms with lower biovolumes and altered architectures, confirming the involvement of these proteins in the biofilm formation process. Our results indicate that Pseudoalteromonas sp. D41 shares biofilm formation mechanisms with human pathogenic bacteria, but also relies on TBDR, which might be more specific to the marine environment.  相似文献   

9.
Bacteriophages are emerging as strong candidates for combating bacterial biofilms. However, reports indicating that host populations can, in some cases, respond to phage predation by an increase in biofilm formation are of concern. This study investigates whether phage predation can enhance the formation of biofilm and if so, if this phenomenon is governed by the emergence of phage-resistance or by non-evolutionary mechanisms (eg spatial refuge). Single-species biofilms of three bacterial pathogens (Pseudomonas aeruginosa, Salmonella enterica serotype Typhimurium, and Staphylococcus aureus) were pretreated and post-treated with species-specific phages. Some of the phage treatments resulted in an increase in the levels of biofilm of their host. It is proposed that the phenotypic change brought about by acquiring phage resistance is the main reason for the increase in the level of biofilm of P. aeruginosa. For biofilms of S. aureus and S. enterica Typhimurium, although resistance was detected, increased formation of biofilm appeared to be a result of non-evolutionary mechanisms.  相似文献   

10.
The aim of the study was to establish an in vitro model of Staphylococcus epidermidis biofilms on polyvinyl chloride (PVC) material, and to investigate bacterial biofilm formation and its structure using the combined approach of confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM). Staphylococcus epidermidis bacteria (stain RP62A) were incubated with PVC pieces in Tris buffered saline to form biofilms. Biofilm formation was examined at 6, 12, 18, 24, 30, and 48 h. Thicknesses of these biofilms and the number, and percentage of viable cells in biofilms were measured. CT scan images of biofilms were obtained using CLSM and environmental SEM. The results of this study showed that Staphylococcus epidermidis biofilm is a highly organized multi-cellular structure. The biofilm is constituted of large number of viable and dead bacterial cells. Bacterial biofilm formation on the surface of PVC material was found to be a dynamic process with maximal thickness being attained at 12–18 h. These biofilms became mature by 24 h. There was significant difference in the percentage of viable cells along with interior, middle, and outer layers of biofilms (P < 0.05). Staphylococcus epidermidis biofilm is sophisticated in structure and the combination method involving CLSM and SEM was ideal for investigation of biofilms on PVC material.  相似文献   

11.
Bacterial species are found primarily as residents of complex surface-associated communities, known as biofilms. Although these structures prevail in nature, bacteria still exist in planktonic lifestyle and differ from those in morphology, physiology, and metabolism. This study aimed to investigate the influence of physiological states of Pseudomonas aeruginosa and Escherichia coli in cell-to-cell interactions. Filtered supernatants obtained under planktonic and biofilm cultures of each single species were supplemented with tryptic soy broth (TSB) and used as the growth media (conditioned media) to planktonic and sessile growth of both single- and two-species cultures. Planktonic bacterial growth was examined through OD640 measurement. One-day-old biofilms were evaluated in terms of biofilm biomass (CV), respiratory activity (XTT), and CFU number. Conditioned media obtained either in biofilm or in planktonic mode of life triggered a synergistic effect on planktonic growth, mainly for E. coli single cultures growing in P. aeruginosa supernatants. Biofilms grown in the presence of P. aeruginosa biofilms-derived metabolites presented less mass and activity. These events highlight that, when developed in biofilm, P. aeruginosa release signals or metabolites able to prejudice single and binary biofilm growth of others species and of their own species. However, products released by their planktonic counterparts did not impair biofilm growth or activity. E. coli, living as planktonic or sessile cultures, released signals and metabolites or removed un-beneficial compounds which promoted the growth and activity of all the species. Our findings revealed that inter and intraspecies behaviors depend on the involved bacteria and their adopted mode of life.  相似文献   

12.
The survival of bacteria in nature is greatly enhanced by their ability to grow within surface-associated communities called biofilms. Commonly, biofilms generate proliferations of bacterial cells, called microcolonies, which are highly recalcitrant, 3-dimensional foci of bacterial growth. Microcolony growth is initiated by only a subpopulation of bacteria within biofilms, but processes responsible for this differentiation remain poorly understood. Under conditions of crowding and intense competition between bacteria within biofilms, microevolutionary processes such as mutation selection may be important for growth; however their influence on microcolony-based biofilm growth and architecture have not previously been explored. To study mutation in-situ within biofilms, we transformed Pseudomonas aeruginosa cells with a green fluorescent protein gene containing a +1 frameshift mutation. Transformed P. aeruginosa cells were non-fluorescent until a mutation causing reversion to the wildtype sequence occurs. Fluorescence-inducing mutations were observed in microcolony structures, but not in other biofilm cells, or in planktonic cultures of P. aeruginosa cells. Thus microcolonies may represent important foci for mutation and evolution within biofilms. We calculated that microcolony-specific increases in mutation frequency were at least 100-fold compared with planktonically grown cultures. We also observed that mutator phenotypes can enhance microcolony-based growth of P. aeruginosa cells. For P. aeruginosa strains defective in DNA fidelity and error repair, we found that microcolony initiation and growth was enhanced with increased mutation frequency of the organism. We suggest that microcolony-based growth can involve mutation and subsequent selection of mutants better adapted to grow on surfaces within crowded-cell environments. This model for biofilm growth is analogous to mutation selection that occurs during neoplastic progression and tumor development, and may help to explain why structural and genetic heterogeneity are characteristic features of bacterial biofilm populations.  相似文献   

13.
Pseudomonas aeruginosa is an opportunistic human pathogen whose survival is aided by forming communities known as biofilms, in which cells are encased in a self‐produced matrix. We devised a mutant screen based on colony morphology to identify additional genes with previously unappreciated roles in biofilm formation. Our screen, which identified most known biofilm‐related genes, also uncovered PA14_16550 and PA14_69700, deletions of which abrogated and augmented biofilm formation respectively. We also identified ptsP, which encodes enzyme I of the nitrogen‐regulated phosphotransferase (PTSNtr) system, as being important for cyclic‐di‐GMP production and for biofilm formation. Further experiments showed that biofilm formation is hindered in the absence of phosphotransfer through the PTSNtr, but only in the presence of enzyme II (PtsN), the putative regulatory module of the PTSNtr. These results implicate unphosphorylated PtsN as a negative regulator of biofilm formation and establish one of the first known roles of the PTSNtr in P. aeruginosa.  相似文献   

14.
Aims: To develop an in vitro flat‐bed perfusion biofilm model that could be used to determine the antimicrobial efficacy of topically applied treatments. Methods and Results: Pseudomonas aeruginosa and Staphylococcus aureus biofilms were grown within continuously perfused cellulose matrices. Enumeration of the biofilm density and eluate was performed at various sampling times, enabling determination of the biofilm growth rate. Two antimicrobial wound dressings were applied to the surface of mature biofilms and periodically sampled. To enable real‐time imaging of biofilm growth and potential antimicrobial kinetics, a bioluminescent Ps. aeruginosa biofilm was monitored using low‐light photometry. Target species produced reproducible steady‐state biofilms at a density of c. 107 per biofilm support matrix, after 24‐h perfusion. Test dressings elicited significant antimicrobial effects, producing differing kill kinetic profiles. There was a good correlation between photon and viable count data. Conclusions: The model enables determination of the antimicrobial profile of topically applied treatments against target species biofilms, accurately differentiating bactericidal from bacteriostatic effects. Moreover, these effects could be monitored in real time using bioluminescence. Significance and Impact of the Study: This is the first in vitro biofilm model which can assess the antimicrobial potential of topical therapies in a dynamic growth environment.  相似文献   

15.
Pseudomonas aeruginosa, a human pathogen capable of forming biofilm and contaminating medical settings, is responsible for 65% mortality in the hospitals all over the world. This study was undertaken to isolate lytic phages against biofilm forming Ps. aeruginosa hospital isolates and to use them for in vitro management of biofilms in the microtiter plate. Multidrug resistant strains of Ps. aeruginosa were isolated from the hospital environment in and around Pimpri-Chinchwad, Maharashtra by standard microbiological methods. Lytic phages against these strains were isolated from the Pavana river water by double agar layer plaque assay method. A wide host range phage bacterial virus Ps. aeruginosa phage (BVPaP-3) was selected. Electron microscopy revealed that BVPaP-3 phage is a T7-like phage and is a relative of phage species gh-1. A phage at MOI-0.001 could prevent biofilm formation by Ps. aeruginosa hospital strain-6(HS6) on the pegs within 24 h. It could also disperse pre-formed biofilms of all hospital isolates (HS1–HS6) on the pegs within 24 h. Dispersion of biofilm was studied by monitoring log percent reduction in cfu and log percent increase in pfu of respective bacterium and phage on the peg as well as in the well. Scanning electron microscopy confirmed that phage BVPaP-3 indeed causes biofilm reduction and bacterial cell killing. Laboratory studies prove that BVPaP-3 is a highly efficient phage in preventing and dispersing biofilms of Ps. aeruginosa. Phage BVPaP-3 can be used as biological disinfectant to control biofilm problem in medical devices.  相似文献   

16.
Pseudomonas aeruginosa, the principal pathogen of cystic fibrosis patients, forms antibiotic‐resistant biofilms promoting chronic colonization of the airways. The extracellular (EPS) matrix is a crucial component of biofilms that provides the community multiple benefits. Recent work suggests that the secondary messenger, cyclic‐di‐GMP, promotes biofilm formation. An analysis of factors specifically expressed in P. aeruginosa under conditions of elevated c‐di‐GMP, revealed functions involved in the production and maintenance of the biofilm extracellular matrix. We have characterized one of these components, encoded by the PA4625 gene, as a putative adhesin and designated it cdrA. CdrA shares structural similarities to extracellular adhesins that belong to two‐partner secretion systems. The cdrA gene is in a two gene operon that also encodes a putative outer membrane transporter, CdrB. The cdrA gene encodes a 220 KDa protein that is predicted to be rod‐shaped protein harbouring a β‐helix structural motif. Western analysis indicates that the CdrA is produced as a 220 kDa proprotein and processed to 150 kDa before secretion into the extracellular medium. We demonstrated that cdrAB expression is minimal in liquid culture, but is elevated in biofilm cultures. CdrAB expression was found to promote biofilm formation and auto‐aggregation in liquid culture. Aggregation mediated by CdrA is dependent on the Psl polysaccharide and can be disrupted by adding mannose, a key structural component of Psl. Immunoprecipitation of Psl present in culture supernatants resulted in co‐immunoprecipitation of CdrA, providing additional evidence that CdrA directly binds to Psl. A mutation in cdrA caused a decrease in biofilm biomass and resulted in the formation of biofilms exhibiting decreased structural integrity. Psl‐specific lectin staining suggests that CdrA either cross‐links Psl polysaccharide polymers and/or tethers Psl to the cells, resulting in increased biofilm structural stability. Thus, this study identifies a key protein structural component of the P. aeruginosa EPS matrix.  相似文献   

17.

Pure culture biofilms of Pseudomonas aeruginosa (strains 8830 and ATCC 700829) and mixed population biofilms composed of Pseudomonas aeruginosa (ATCC 700829), Pseudomonas fluorescens (ATCC 700830), and Klebsiellapneumoniae (ATCC 700831) were treated with an alginate‐degrading enzyme (AlgL). The enzyme effectively depolymerized the mannuronic acid rich (92%), partially O‐acetylated bacterial alginate produced by P. aeruginosa (8830), both in dilute solution and in a gel‐like, concentrated state. However, both biofilms were unaffected by the presence of the enzyme. These findings suggest either that bacterial alginates do not contribute significantly to the cohesiveness of biofilms or that the alginate is protected from enzymatic degradation in biofilms.  相似文献   

18.
Due to the refractory nature of pathogenic microbial biofilms, innovative biofilm eradication strategies are constantly being sought. Thus, this study addresses a novel approach to eradicate Pseudomonas aeruginosa biofilms. Magnetic nanoparticles (MNP), ciprofloxacin (Cipro), and magnetic fields were systematically evaluated in vitro for their relative anti-biofilm contributions. Twenty-four-hour biofilms exposed to aerosolized MNPs, Cipro, or a combination of both, were assessed in the presence or absence of magnetic fields (Static one-sided, Static switched, Oscillating, Static + oscillating) using changes in bacterial metabolism, biofilm biomass, and biofilm imaging. The biofilms exposed to magnetic fields alone exhibited significant metabolic and biomass reductions (p < 0.05). When biofilms were treated with a MNP/Cipro combination, the most significant metabolic and biomass reductions were observed when exposed to static switched magnetic fields (p < 0.05). The exposure of P. aeruginosa biofilms to a static switched magnetic field alone, or co-administration with MNP/Cipro/MNP + Cipro appears to be a promising approach to eradicate biofilms of this bacterium.  相似文献   

19.
Staphylococcus aureus is able to disseminate from vascular device biofilms to the blood and organs, resulting in life‐threatening infections such as endocarditis. The mechanisms behind spreading are largely unknown, especially how the bacterium escapes immune effectors and antibiotics in the process. Using an in vitro catheter infection model, we studied S. aureus biofilm growth, late‐stage dispersal, and reattachment to downstream endothelial cell layers. The ability of the released biofilm material to resist host response and disseminate in vivo was furthermore studied in whole blood and phagocyte survival assays and in a short‐term murine infection model. We found that S. aureus biofilms formed in flow of human plasma release biofilm thromboemboli with embedded bacteria and bacteria‐secreted polysaccharides. The emboli disseminate as antibiotic and immune resistant vehicles that hold the ability to adhere to and initiate colonisation of endothelial cell layers under flow. In vivo experiments showed that the released biofilm material reached the heart similarly as ordinary broth‐grown bacteria but also that clumps to some extend were trapped in the lungs. The clumping dispersal of S. aureus from in vivo‐like vascular biofilms and their specific properties demonstrated here help explain the pathophysiology associated with S. aureus bloodstream infections.  相似文献   

20.
New monohalogenated maleimide derivatives (with bromine, chlorine or iodine) were synthesized to test the effect of halogen atoms in inhibiting the formation of Pseudomonas aeruginosa biofilm. The evaluation of their biological activities clearly defines a structure–activity relationship. In this study, the bactericidal action of the three compounds was observed at the concentration range 0.3–5.0 mM on Luria-Bertani agar plates. The halogen atom of these molecules was critical in modulating the antibacterial activity, with a slightly higher effectiveness for chlorine. Confocal laser scanning microscopy was used to examine P. aeruginosa biofilms cultivated in flow cells. At concentration as low as 40 μM, the bromine and iodine compounds displayed a total inhibition towards the formation of bacterial biofilm. At this concentration, the bacterial attachment to glass surfaces was strongly affected by the presence of bromine and iodine whereas the chlorine derivative behaved as a bactericidal compound. A bioluminescent reporter strain was then used to detect the effect of the chemically synthesized maleimides on quorum sensing (QS) in P. aeruginosa. At the concentration range 10–100 μM, bioluminescence assays reveal that halogenated maleimides were able to interfere with the QS of the bacterium. Although the relationship between the weak inhibition of cell-to-cell communication (15–55% of the signal) and the high inhibition of biofilm formation has not been elucidated clearly, the results demonstrate that bromo- and iodo-N-substituted maleimides bromine and iodine may be used as new potent inhibitors that control bacterial biofilms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号