首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Staphylococcus aureus is able to disseminate from vascular device biofilms to the blood and organs, resulting in life‐threatening infections such as endocarditis. The mechanisms behind spreading are largely unknown, especially how the bacterium escapes immune effectors and antibiotics in the process. Using an in vitro catheter infection model, we studied S. aureus biofilm growth, late‐stage dispersal, and reattachment to downstream endothelial cell layers. The ability of the released biofilm material to resist host response and disseminate in vivo was furthermore studied in whole blood and phagocyte survival assays and in a short‐term murine infection model. We found that S. aureus biofilms formed in flow of human plasma release biofilm thromboemboli with embedded bacteria and bacteria‐secreted polysaccharides. The emboli disseminate as antibiotic and immune resistant vehicles that hold the ability to adhere to and initiate colonisation of endothelial cell layers under flow. In vivo experiments showed that the released biofilm material reached the heart similarly as ordinary broth‐grown bacteria but also that clumps to some extend were trapped in the lungs. The clumping dispersal of S. aureus from in vivo‐like vascular biofilms and their specific properties demonstrated here help explain the pathophysiology associated with S. aureus bloodstream infections.  相似文献   

2.
A novel benzimidazole molecule that was identified in a small‐molecule screen and is known as antibiofilm compound 1 (ABC‐1) has been found to prevent bacterial biofilm formation by multiple bacterial pathogens, including Staphylococcus aureus, without affecting bacterial growth. Here, the biofilm inhibiting ability of 156 μM ABC‐1 was tested in various biofilm‐forming strains of S. aureus. It was demonstrated that ABC‐1 inhibits biofilm formation by these strains at micromolar concentrations regardless of the strains' dependence on Polysaccharide Intercellular Adhesin (PIA), cell wall‐associated protein dependent or cell wall‐ associated extracellular DNA (eDNA). Of note, ABC‐1 treatment primarily inhibited Protein A (SpA) expression in all strains tested. spa gene disruption showed decreased biofilm formation; however, the mutants still produced more biofilm than ABC‐1 treated strains, implying that ABC‐1 affects not only SpA but also other factors. Indeed, ABC‐1 also attenuated the accumulation of PIA and eDNA on cell surface. Our results suggest that ABC‐1 has pleotropic effects on several biofilm components and thus inhibits biofilm formation by S. aureus.  相似文献   

3.
Staphylococcus aureus is a versatile human pathogen that produces diverse virulence factors, and its biofilm cells are difficult to eradicate due to their inherent ability to tolerate antibiotics. The anti-biofilm activities of the spent media of 252 diverse endophytic microorganisms were investigated using three S. aureus strains. An attempt was made to identify anti-biofilm compounds in active spent media and to assess their anti-hemolytic activities and hydrophobicities in order to investigate action mechanisms. Unlike other antibiotics, actinomycin D (0.5 μg ml?1) from Streptomyces parvulus significantly inhibited biofilm formation by all three S. aureus strains. Actinomycin D inhibited slime production in S. aureus and it inhibited hemolysis by S. aureus and caused S. aureus cells to become less hydrophobic, thus supporting its anti-biofilm effect. In addition, surface coatings containing actinomycin D prevented S. aureus biofilm formation on glass surfaces. Given these results, FDA-approved actinomycin D warrants further attention as a potential antivirulence agent against S. aureus infections.  相似文献   

4.
Many serious diseases caused by Staphylococcus aureus appear to be associated with biofilms. Therefore, we investigated the biofilm-forming ability of the methicillin-resistant S. aureus (MRSA) isolates collected from hospitalized patients. As many as 96?% strains had the ability to form biofilm in vitro. The majority of S. aureus strains formed biofilm in ica-dependent mechanism. However, 23?% of MRSA isolates formed biofilm in ica-independent mechanism. Half of these strains carried fnbB genes encoding surface proteins fibronectin-binding protein B involved in intercellular accumulation and biofilm development in S. aureus strains. The biofilm structures were examined via confocal laser scanning microscopy (CLSM) and three-dimensional structures were reconstructed. The images obtained in CLSM revealed that the biofilm created by ica-positive strains was different from biofilm formed by ica-negative strains. The MRSA population showed a large genetic diversity and we did not find a single clone that occurred preferentially in hospital environment. Our results demonstrated the variation in genes encoding adhesins for the host matrix proteins (elastin, laminin, collagen, fibronectin, and fibrinogen) and in the gene involved in biofilm formation (icaA) within the majority of S. aureus clones.  相似文献   

5.
Persistent staphylococcal infections often involve surface‐associated communities called biofilms. Staphylococcus aureus biofilm development is mediated by the co‐ordinated production of the biofilm matrix, which can be composed of polysaccharides, extracellular DNA (eDNA) and proteins including amyloid fibers. The nature of the interactions between matrix components, and how these interactions contribute to the formation of matrix, remain unclear. Here we show that the presence of eDNA in S. aureus biofilms promotes the formation of amyloid fibers. Conditions or mutants that do not generate eDNA result in lack of amyloids during biofilm growth despite the amyloidogeneic subunits, phenol soluble modulin peptides, being produced. In vitro studies revealed that the presence of DNA promotes amyloid formation by PSM peptides. Thus, this work exposes a previously unacknowledged interaction between biofilm matrix components that furthers our understanding of functional amyloid formation and S. aureus biofilm biology.  相似文献   

6.
Bacteriophages are emerging as strong candidates for combating bacterial biofilms. However, reports indicating that host populations can, in some cases, respond to phage predation by an increase in biofilm formation are of concern. This study investigates whether phage predation can enhance the formation of biofilm and if so, if this phenomenon is governed by the emergence of phage-resistance or by non-evolutionary mechanisms (eg spatial refuge). Single-species biofilms of three bacterial pathogens (Pseudomonas aeruginosa, Salmonella enterica serotype Typhimurium, and Staphylococcus aureus) were pretreated and post-treated with species-specific phages. Some of the phage treatments resulted in an increase in the levels of biofilm of their host. It is proposed that the phenotypic change brought about by acquiring phage resistance is the main reason for the increase in the level of biofilm of P. aeruginosa. For biofilms of S. aureus and S. enterica Typhimurium, although resistance was detected, increased formation of biofilm appeared to be a result of non-evolutionary mechanisms.  相似文献   

7.
Polyamines such as spermidine and spermine are primordial polycations that are ubiquitously present in the three domains of life. We have found that Gram‐positive bacteria Staphylococcus aureus and Enterococcus faecalis have lost either all or most polyamine biosynthetic genes, respectively, and are devoid of any polyamine when grown in polyamine‐free media. In contrast to bacteria such as Pseudomonas aeruginosa, Campylobacter jejuni and Agrobacterium tumefaciens, which absolutely require polyamines for growth, S. aureus and E. faecalis grow normally over multiple subcultures in the absence of polyamines. Furthermore, S. aureus and E. faecalis form biofilms normally without polyamines, and exogenous polyamines do not stimulate growth or biofilm formation. High levels of external polyamines, including norspermidine, eventually inhibit biofilm formation through inhibition of planktonic growth. We show that spermidine/spermine N‐acetyltransferase (SSAT) homologues encoded by S. aureus USA300 and E. faecalis acetylate spermidine, spermine and norspermidine, that spermine is the more preferred substrate, and that E. faecalis SSAT is almost as efficient as human SSAT with spermine as substrate. The polyamine auxotrophy, polyamine‐independent growth and biofilm formation, and presence of functional polyamine N‐acetyltransferases in S. aureus and E. faecalis represent a new paradigm for bacterial polyamine biology.  相似文献   

8.
9.
The effects of carvacrol, a natural biocide, on dual-species biofilms formed by Staphylococcus aureus and Salmonella enterica serovar Typhimurium were investigated with a constant-depth film fermentor. Biofilm development reached a quasi-steady state in 12 days at 25°C with S. aureus predominance (≈99%). Cryosectional analysis detected viable S. aureus and S. enterica serovar Typhimurium at depths of 320 and 180 μm from the film surface, respectively. Carvacrol pulses (1.0 mmol/h) inhibited S. aureus by 2.5 log CFU/biofilm during the early stages of film formation, ultimately causing a significant reduction (P < 0.001) of the staphylococcal population at quasi-steady state. Initial carvacrol pulsing elicited a 3 log CFU/biofilm reduction in viable S. enterica serovar Typhimurium, and additional periodic carvacrol pulses instigated significant inhibition of salmonellae (1 to 2 log CFU/biofilm) during biofilm development. Carvacrol pulsing reduced protein levels fivefold (P < 0.001) during initial biofilm development. Comparative studies with a peroxide-based commercial sanitizer (Spor-Klenz RTU) revealed that this commercial sanitizer was more biocidal than carvacrol during early biofilm development. When the biofilm reached quasi-steady state, however, periodic pulses with 1 mmol of carvacrol per h (P = 0.021) elicited a significantly higher inhibition than Spor-Klenz RTU (P = 0.772). Dual-species microcolonies formed under the influence of continuously fed low carvacrol concentrations (1.0 mmol/h) but failed to develop into a mature quasi-steady-state biofilm and did not reach any stage of film formation in the presence of high concentrations (5.0 mmol/h). These data show that carvacrol is an effective natural intervention to control dual-species biofilm formation.  相似文献   

10.
Staphylococcus aureus is now amongst the most important pathogenic bacteria responsible for bloodstream nosocomial infections and for biofilm formation on indwelling medical devices. Its increasing resistance to common antibiotics, partly attributed to its ability to form biofilms, is a challenge for the development of new antimicrobial agents. Accordingly, the goal of this study was to evaluate the effect of a coral associated actinomycete (CAA) - 3 on S. aureus biofilms both in vitro and in vivo. Methanolic extracts of CAA-3 showed a reduction in in vitro biofilm formation by S. aureus ATCC 11632, methicillin resistant S. aureus ATCC 33591 and clinical isolates of S. aureus at the biofilm inhibitory concentration (BIC) of 0.1 mg ml?1. Furthermore, confocal laser scanning microscope (CLSM) studies provide evidence of CAA-3 inhibiting intestinal colonisation of S. aureus in the nematode Caenorhabditis elegans. To conclude, this study for the first time, reports CAA as a promising source of anti-biofilm compounds, for developing novel drugs against highly resistant staphylococcal biofilms.  相似文献   

11.
Aims: To establish the effect of Quercus infectoria G. Olivier extract and its main constituent, tannic acid, on staphylococcal biofilm and their anti‐biofilm mechanisms. Methods and Results: Anti‐biofilm activity of the plant materials on clinical isolated of methicillin‐resistant Staphylococcus aureus and methicillin‐susceptible Staph. aureus was employed using a crystal violet‐stained microtiter plate method. The extract at minimum inhibitory concentration (MIC; 0·25 mg ml?1) was significantly reduced the biofilm formation of the isolates (P < 0·05). The effect on staphylococcal cell surface hydrophobicity (CSH) of the test compounds was investigated as a possible mode of action of the anti‐biofilm activity. The hydrophobicity index of all the bacterial isolates increased following treatment with supra‐MIC, MIC and sub‐MIC of the extract and tannic acid. Observation of the treated bacterial cells by electron microscopy revealed that the test compounds caused clumps of partly divided cocci with thickened and slightly rough cell wall. Conclusions: The results indicated that Q. infectoria extract and tannic acid affected staphylococcal biofilm formation and their effect on bacterial CSH and cell wall may involve in the anti‐biofilm activity. Significance and Impact of the Study: This evidence highlighted the anti‐biofilm potency of the natural products and clarified their anti‐biofilm mechanisms.  相似文献   

12.
The staphylococcal nuclease, encoded by the nuc1 gene, is an important virulence factor of Staphylococcus aureus. However, the physiological role of the nuclease has not been fully characterized. The current study observed that biofilm development could be prevented in staphylococcal nuclease-producing strains of S. aureus; however, when the nuc1 gene was knocked out, the ability to form a biofilm significantly increased. Scanning electron and confocal scanning laser microscopy were used to evaluate the role of the nuc1 gene in biofilm formation. Moreover, the nuc1 gene product, staphylococcal nuclease, and recombinant NUC1 protein were found to have a visible effect on other biofilm-forming bacteria, such as Pseudomonas aeruginosa, Actinobacillus pleuropneumoniae, and Haemophilus parasuis. The current study showed a direct relationship between staphylococcal nuclease production and the prevention of biofilm development. The findings from this study underscore the important role of staphylococcal nuclease activity to prevent biofilm formation in S. aureus. They also provided evidence for the biological role of staphylococcal nucleases in other organisms.  相似文献   

13.
14.
Aims: To investigate the ability of a mixture of phage K and six of its modified derivatives to prevent biofilm formation by Staphylococcus aureus and also to reduce the established biofilm density. Methods and Results: The bioluminescence‐producing Staph. aureus Xen29 strain was used in the study, and incubation of this strain in static microtitre plates at 37°C for 48 h confirmed its strong biofilm‐forming capacity. Subsequently, removal of established biofilms of Staph. aureus Xen29 with the high‐titre phage combination was investigated over time periods of 24 h, 48 h and 72 h. Results suggested that these biofilms were eliminated in a time‐dependant manner, with biofilm biomass reduction significantly greater after 72 h than after 24–48 h. In addition, initial challenge of Staph. aureus Xen29 with the phage cocktail resulted in the complete inhibition of biofilm formation over a 48‐h period with no appearance of phage resistance. Conclusions: In general, our findings demonstrate the potential use of a modified phage combination for the prevention and successful treatment of Staph. aureus biofilms, which are implicated in several antibiotic‐resistant infections. Significance and Impact of the Study: This study highlights the first use of phage K for the successful removal and prevention of biofilms of Staph. aureus.  相似文献   

15.
Aims: Research on biofilms requires validated quantitative models that focus both on matrix and viable bacterial mass. In this study, a new microplate model for the detection of Staphylococcus aureus biofilms was developed. Methods and Results: Dimethyl methylene blue (DMMB) dye was used to quantify biofilm matrix colorimetrically. Initially developed for the detection of glycosaminoglycans, the DMMB protocol was optimized for S. aureus biofilm research. In addition, the redox indicator resazurin was used to determine the viable bacterial biofilm burden. Conclusion: A new, simple and reproducible microplate test system based on DMMB and resazurin, offering a reliable differentiation between biofilm matrix and cellular activity, was developed and validated for the detection of S. aureus biofilms. Significance and Impact of the Study: The DMMB–resazurin microtitre plate model is a valuable tool for high capacity screening of biocides and for the development of synergistic mixtures of biocides, destroying both biofilm matrix and bacteria.  相似文献   

16.

Background  

Staphylococcus epidermidis has emerged as one of the most important nosocomial pathogens, mainly because of its ability to colonize implanted biomaterials by forming a biofilm. Extensive studies are focused on the molecular mechanisms involved in biofilm formation. The LytSR two-component regulatory system regulates autolysis and biofilm formation in Staphylococcus aureus. However, the role of LytSR played in S. epidermidis remained unknown.  相似文献   

17.
Bacterial biofilms are associated with chronic infections due to their resistance to antimicrobial agents. Staphylococcus aureus is a versatile human pathogen and can form biofilms on human tissues and diverse medical devices. To identify novel biofilm inhibitors of S. aureus, the supernatants from a library of 458 Actinomycetes strains were screened. The culture supernatants (1% v/v) of more than 10 Actinomycetes strains inhibited S. aureus biofilm formation by more than 80% without affecting the growth. The culture supernatants of these biofilm-reducing Actinomycetes strains contained a protease (equivalent to 0.1 μg proteinase K ml−1), which both inhibited S. aureus biofilm formation and detached pre-existing S. aureus biofilms. This study suggests that protease treatment could be a feasible tool to reduce and eradicate S. aureus biofilms.  相似文献   

18.
Staphylococcus aureus and Staphylococcus epidermidis are the major cause of infections associated with implanted medical devices. Colonization on abiotic and biotic surfaces is often sustained by biofilm forming strains. Human natural defenses can interfere with this virulence factor. We investigated the effect of human apo-transferrin (apo-Tf, the iron-free form of transferrin, Tf) and holo-transferrin (holo-Tf, the iron-saturated form) on biofilm formation by CA-MRSA S. aureus USA300 type (ST8-IV) and S. epidermidis (a clinical isolate and ATCC 35984 strain). Furthermore S. aureus adhesion and invasion assays were performed in a eukaryotic cell line. A strong reduction in biofilm formation with both Tfs was obtained albeit at very different concentrations. In particular, the reduction in biofilm formation was higher with apo-Tf rather than obtained with holo-Tf. Furthermore, while S. aureus adhesion to eukaryotic cells was not appreciably affected, their invasion was highly inhibited in the presence of holo-Tf, and partially inhibited by the apo form. Our results suggest that Tfs could be used as antibacterial adjuvant therapy in infection sustained by staphylococci to strongly reduce their virulence related to adhesion and cellular invasion.  相似文献   

19.
Staphylococcus aureus (S. aureus) is a frequent cause of infections in both humans and animals. Probiotics are known to inhibit colonization of pathogens on host tissues. However, mechanisms for the inhibition are still elusive due to complex host–microbe and microbe–microbe interactions. Here, we show that reduced abilities of S. aureus to infect mammary glands in the presence of Weissella cibaria (W. cibaria) were correlated with its poor adherence to mammary epithelial cells. Such inhibition by W. cibaria isolates was at least partially attributed to a fibronectin‐binding protein (FbpA) on this lactic acid bacterium. Three Wcibaria isolates containing fbpA had higher inhibitory abilities than other three LAB isolates without the gene. The fbpA‐deficient mutant of Wcibaria isolate LW1, LW1ΔfbpA, lost the inhibitory activity to reduce the adhesion of Saureus to mammary epithelial cells and was less able to reduce the colonization of Saureus in mammary glands. Expression of FbpA to the surface of LW1ΔfbpA reversed its inhibitory activities. Furthermore, addition of purified FbpA inhibited Saureus biofilm formation. Our results suggest that Wcibaria FbpA hinders Saureus colonization and infection through interfering with the Saureus invasion pathway mediated by fibronectin‐binding proteins and inhibiting biofilm formation of Saureus.  相似文献   

20.
Recombinant sortase A (SrtA) was used to immune rabbit, and the inhibitory activity of anti-SrtA serum on Staphylococcus aureus biofilm formation was tested. Biofilm formation was inhibited by anti-SrtA rabbit serum in S. aureus ATCC25923 and two clinical isolated strains. The antiserum was separated into two fractions, and the main component with the inhibitory activity was demonstrated to be the IgG fraction. Two proteins interact with the IgG fraction were identified by using an in vitro pull-down assay and were confirmed to be lipase 2 and γ-hemolysin by mass spectrometry. Cross-interaction between SrtA and lipase 2 was further confirmed by Western blotting. Addition of anti-lipase 2 serum in the culture medium also showed inhibitory effect against biofilm formation. Together, our study suggests anti-SrtA serum inhibits S. aureus biofilm formation and lipase 2 is one of the targets of anti-SrtA serum in this inhibition process. This is the first study to demonstrate the roles of antisera against SrtA and lipase 2 in the inhibition of biofilm formation in S. aureus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号