首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aims

To determine the herd prevalence of Enterobacteriaceae producing CTX‐M‐type extended‐spectrum β‐lactamases (ESBLs) among 381 dairy farms in Japan.

Methods and Results

Between 2007 and 2009, we screened 897 faecal samples using BTB lactose agar plates containing cefotaxime (2 μg ml?1). Positive isolates were tested using ESBL confirmatory tests, PCR and sequencing for CTX‐M, AmpC, TEM and SHV. The incidence of Enterobacteriaceae producing CTX‐M‐15 (= 7), CTX‐M‐2 (= 12), CTX‐M‐14 (= 3), CMY‐2 (= 2) or CTX‐M‐15/2/14 and CMY‐2 (= 4) in bovine faeces was 28/897 (3·1%) faecal samples. These genes had spread to Escherichia coli (= 23) and three genera of Enterobacteriaceae (= 5). Herd prevalence was found to be 20/381 (5·2%) dairy farms. The 23 E. coli isolates showed clonal diversity, as assessed by multilocus sequence typing and pulsed‐field gel electrophoresis. The pandemic E. coli strain ST131 producing CTX‐M‐15 or CTX‐M‐27 was not detected.

Conclusions

Three clusters of CTX‐M (CTX‐M‐15, CTX‐M‐2, CTX‐M‐14) had spread among Japanese dairy farms.

Significance and Impact of the Study

This is the first report on the prevalence of multidrug‐resistant CTX‐M‐15–producing E. coli among Japanese dairy farms.  相似文献   

2.
Outbreaks of vector‐borne diseases are dramatically increasing because of climate change, consequently increasing the importance of surveillance of endemic disease vectors. In this study, we surveyed chigger mites, vectors for Orientia tsutsugamushi—the bacteria that causes Tsutsugamushi disease—, and their rodent hosts in Gimcheon, central South Korea, in 2015–2018. A total of 225 rodents were collected, with trap rate and percentage of rodents infected by chigger mites of 9.8 and 72.4%, respectively. Six species of rodents from five genera were collected, the most common rodent being Apodemus agrarius (n = 153, infection rate = 90.8%). The highest number of rodents was collected in spring (trap rate = 10.3), but the rate of infected rodents was higher in fall (81.5%) than in spring (61.3%). Trap rate was highest for bank near waterway (17.9), but the chigger index (CI) was highest in hill (224.1). A total of 20,534 (CI 126.0) chigger mite individuals from 10 species and three genera were found on the collected rodents. The most common species was Leptotrombidium pallidum (n = 7,982, 83.6%, CI 49.0), followed by L. palpale and L. scutellare. Chigger mites were most frequent at banks near waterway (n = 11,093, CI 152.0) and hill (n = 2,017, CI 224.1). To detect O. tsutsugamushi in chigger mites, 450 pools of chigger mites (n = 10,991) were analyzed; 24 pools were positive—23 of A. agrarius, the most frequently collected species in South Korea, 1 of Micromys minutus—and the minimum positive rate (MPR) was 0.22. The detected strain types included Boryong (dominant in all years, seasons, and habitats), Jecheon, 07–489, and IIOC1202.  相似文献   

3.
Generating a contiguous, ordered reference sequence of a complex genome such as hexaploid wheat (2n = 6x = 42; approximately 17 GB) is a challenging task due to its large, highly repetitive, and allopolyploid genome. In wheat, ordering of whole‐genome or hierarchical shotgun sequencing contigs is primarily based on recombination and comparative genomics‐based approaches. However, comparative genomics approaches are limited to syntenic inference and recombination is suppressed within the pericentromeric regions of wheat chromosomes, thus, precise ordering of physical maps and sequenced contigs across the whole‐genome using these approaches is nearly impossible. We developed a whole‐genome radiation hybrid (WGRH) resource and tested it by genotyping a set of 115 randomly selected lines on a high‐density single nucleotide polymorphism (SNP) array. At the whole‐genome level, 26 299 SNP markers were mapped on the RH panel and provided an average mapping resolution of approximately 248 Kb/cR1500 with a total map length of 6866 cR1500. The 7296 unique mapping bins provided a five‐ to eight‐fold higher resolution than genetic maps used in similar studies. Most strikingly, the RH map had uniform bin resolution across the entire chromosome(s), including pericentromeric regions. Our research provides a valuable and low‐cost resource for anchoring and ordering sequenced BAC and next generation sequencing (NGS) contigs. The WGRH developed for reference wheat line Chinese Spring (CS‐WGRH), will be useful for anchoring and ordering sequenced BAC and NGS based contigs for assembling a high‐quality, reference sequence of hexaploid wheat. Additionally, this study provides an excellent model for developing similar resources for other polyploid species.  相似文献   

4.
Polyploidy is known to be common in plants and recent work has focused on the rapid changes in genome structure and expression that occur upon polyploidization. In Arabidopsis, much of this work has been done on a synthetic allotetraploid obtained by crossing a tetraploid Arabidopsis thaliana (2= 4= 20) with A. arenosa (2= 4= 32). To explore an alternative route to polyploidy in this model species, we have developed a synthetic allopolyploid by crossing two diploid species: A. thaliana (2= 2= 10) and Arabidopsis lyrata subsp. petraea (2= 2= 16). F1 hybrids were easy to obtain and phenotypically more similar to A. lyrata. Spontaneous chromosome doubling events occurred in about 25% of the F1s, thus restoring fertility. The resulting allotetraploids (2= 26) exhibited many genomic changes typically reported upon polyploidization. Nucleolar dominance was observed as only the A. lyrata rDNA loci were expressed in the F1 and allotetraploids. Changes in the degree of methylation were observed at almost 25% of the loci examined by MSAP analysis. Finally, structural genomic alterations did occur as a large deletion covering a significant portion of the upper arm of chromosome II was detected but no evidence of increased mobility of transposons was obtained. Such allotetraploids derived from two parents with sequenced (or soon to be sequenced) genomes offer much promise in elucidating the various changes that occur in newly synthesized polyploids.  相似文献   

5.
With the Illumina BovineSNP50K BeadChip, we performed a genome‐wide association study (GWAS) for two pigmentation traits in a Chinese Holstein population: proportion of black (PB) and teat colour (TC). A case–control design was used. Cases were the cows with PB <0.30 (= 129) and TC <2 points (= 140); controls were those with PB >0.90 (= 58) and TC >4 points (= 281). The RM test of roadtrips (version 1.2) was applied to detect SNPs for the two traits with 42 883 and 42 741 SNPs respectively. A total of nine and 12 genome‐wide significant (< 0.05) SNPs associated with PB and TC respectively were identified. Of these, two SNPs for PB were located within the KIT and IGFBP7 genes, and the other four SNPs were 23~212 kb away from the PDGFRA gene on BTA6; nine SNPs associated with TC were located within or 21~78.8 kb away from known genes on chromosomes 4, 11, 22, 23 and 24. By combing through our GWAS results and the biological functions of the genes, we suggest that the KIT, IGFBP7, PDGFRA, MITF, ING3 and WNT16 genes are promising candidates for PB and TC in Holstein cattle, providing a basis for further investigation on the genetic mechanism of pigmentation formation.  相似文献   

6.
Linear chromosomes of eukaryotic organisms invariably possess centromeres and telomeres to ensure proper chromosome segregation during nuclear divisions and to protect the chromosome ends from deterioration and fusion, respectively. While centromeric sequences may differ between species, with arrays of tandemly repeated sequences and retrotransposons being the most abundant sequence types in plant centromeres, telomeric sequences are usually highly conserved among plants and other organisms. The genome size of the carnivorous genus Genlisea (Lentibulariaceae) is highly variable. Here we study evolutionary sequence plasticity of these chromosomal domains at an intrageneric level. We show that Genlisea nigrocaulis (1C = 86 Mbp; 2n = 40) and G. hispidula (1C = 1550 Mbp; 2n = 40) differ as to their DNA composition at centromeres and telomeres. G. nigrocaulis and its close relative G. pygmaea revealed mainly 161 bp tandem repeats, while G. hispidula and its close relative G. subglabra displayed a combination of four retroelements at centromeric positions. G. nigrocaulis and G. pygmaea chromosome ends are characterized by the Arabidopsis‐type telomeric repeats (TTTAGGG); G. hispidula and G. subglabra instead revealed two intermingled sequence variants (TTCAGG and TTTCAGG). These differences in centromeric and, surprisingly, also in telomeric DNA sequences, uncovered between groups with on average a > 9‐fold genome size difference, emphasize the fast genome evolution within this genus. Such intrageneric evolutionary alteration of telomeric repeats with cytosine in the guanine‐rich strand, not yet known for plants, might impact the epigenetic telomere chromatin modification.  相似文献   

7.
The Tibetan chicken (TBC), an indigenous chicken breed of the Tibetan Plateau, has adapted to its hypoxic, high‐altitude environment over hundreds of years. The objective of this study was to identify the polymorphisms and genes associated with adaptation to hypoxia in this chicken breed. In the present study, samples were collected during days 18–21 of the incubation period from both surviving chicks and dead embryos, all of which were hatched under hypoxic conditions. A genome‐wide association study was conducted using the Illumina iSelect 60K SNP array with a case–control design, in which the case group consisted of the dead chicken embryos (= 54) and controls were the surviving chicks (= 82). Four significant SNPs were detected at the genome‐wide level (< 0.05), and the results indicated that fork head box G1 (FOXG1) was the main candidate gene. The lead SNP NC_006092.4:g.33368893T>C was confirmed with a polymerase chain reaction‐restriction fragment length polymorphism analysis of 122 cases and 212 controls. A chi‐square test showed a significant association between NC_006092.4:g.33368893T>C and hatchability under hypoxic conditions (< 0.01). Our results revealed novel polymorphisms and a candidate gene associated with hypoxic adaptation, facilitating further study in this field.  相似文献   

8.
Glycine latifolia (Benth.) Newell & Hymowitz (2= 40), one of the 27 wild perennial relatives of soybean, possesses genetic diversity and agronomically favorable traits that are lacking in soybean. Here, we report the 939‐Mb draft genome assembly of G. latifolia (PI 559298) using exclusively linked‐reads sequenced from a single Chromium library. We organized scaffolds into 20 chromosome‐scale pseudomolecules utilizing two genetic maps and the Glycine max (L.) Merr. genome sequence. High copy numbers of putative 91‐bp centromere‐specific tandem repeats were observed in consecutive blocks within predicted pericentromeric regions on several pseudomolecules. No 92‐bp putative centromeric repeats, which are abundant in G. max, were detected in G. latifolia or Glycine tomentella. Annotation of the assembled genome and subsequent filtering yielded a high confidence gene set of 54 475 protein‐coding loci. In comparative analysis with five legume species, genes related to defense responses were significantly overrepresented in Glycine‐specific orthologous gene families. A total of 304 putative nucleotide‐binding site (NBS)‐leucine‐rich‐repeat (LRR) genes were identified in this genome assembly. Different from other legume species, we observed a scarcity of TIR‐NBS‐LRR genes in G. latifolia. The G. latifolia genome was also predicted to contain genes encoding 367 LRR‐receptor‐like kinases, a family of proteins involved in basal defense responses and responses to abiotic stress. The genome sequence and annotation of G. latifolia provides a valuable source of alternative alleles and novel genes to facilitate soybean improvement. This study also highlights the efficacy and cost‐effectiveness of the application of Chromium linked‐reads in diploid plant genome de novo assembly.  相似文献   

9.
10.
11.
12.
The trophic discrimination factor (TDF) of nitrogen isotopes (15N/14N) within amino acids, between a stream‐dwelling dobsonfly larva (Protohermes grandis: Megaloptera; Corydalidae) and its diet (chironomid larvae), was determined in controlled feeding experiments. Last‐instar larvae of P. grandis were collected from the Yozawa‐gawa River, central Japan, and reared in the laboratory. After fed to satiation for 1 month, one group of larvae was each fed one living chironomid larva per day for 4 weeks, while a second group was starved for 8 weeks. The larvae were harvested at intervals and the nitrogen isotopic composition of glutamic acid (δ15NGlu) and phenylalanine (δ15NPhe) were determined to calculate TDF. The mean TDF of satiated and starved larvae were 7.1‰ ± 0.5‰ (= 3) and 7.3‰ ± 0.5‰ (= 5), respectively. Thus, the TDF for P. grandis larvae in this study was similar to that reported for other arthropods (approximately 7‰) and was independent of satiation or starvation. A previous study of wild P. grandis larvae, based on the δ15NGlu and δ15NPhe values, estimated its trophic position (TP) as approximately 2.0 ± 0.1 (= 5), a low value close to that of algivores, although they are generally characterized as carnivores (usually accepted as TP ≥ 3). The TDF for P. grandis larvae suggests that their low TPs in nature were caused by incorporation of vascular plant‐derived amino acids (with a different δ15N profile from that of algae) and not by an unusually low TDF or by the effects of the satiation/starvation on amino acid metabolism.  相似文献   

13.
The development of salt‐tolerant genotypes is pivotal for the effective utilization of salinized land and to increase global crop productivity. Several cotton species comprise the most important source of textile fibers globally, and these are increasingly grown on marginal or increasingly saline agroecosystems. The allopolyploid cotton species also provide a model system for polyploid research, of relevance here because polyploidy was suggested to be associated with increased adaptation to stress. To evaluate the genetic variation of salt tolerance among cotton species, 17 diverse accessions of allopolyploid (AD‐genome) and diploid (A‐ and D‐genome) Gossypium were evaluated for a total of 29 morphological and physiological traits associated with salt tolerance. For most morphological and physiological traits, cotton accessions showed highly variable responses to 2 weeks of exposure to moderate (50 mm NaCl) and high (100 mm NaCl) hydroponic salinity treatments. Our results showed that the most salt‐tolerant species were the allopolyploid Gossypium mustelinum from north‐east Brazil, the D‐genome diploid Gossypium klotzschianum from the Galapagos Islands, followed by the A‐genome diploids of Africa and Asia. Generally, A‐genome accessions outperformed D‐genome cottons under salinity conditions. Allopolyploid accessions from either diploid genomic group did not show significant differences in salt tolerance, but they were more similar to one of the two progenitor lineages. Our findings demonstrate that allopolyploidy in itself need not be associated with increased salinity stress tolerance and provide information for using the secondary Gossypium gene pool to breed for improved salt tolerance.  相似文献   

14.
Recently, we identified the mimotope UH‐CIS6 as a novel candidate antibody target for clinically isolated syndrome (CIS) and relapsing‐remitting (RR) multiple sclerosis (MS). The purpose of this study was to further validate UH‐CIS6 as an antibody target for CIS and MS and to identify the in vivo antibody target of UH‐CIS6. First, a UH‐CIS6 peptide ELISA was optimized. Next, we investigated the antibody response toward UH‐CIS6 in cerebrospinal fluid (CSF) from patients with CIS (= 20), MS (= 43) and other neurological diseases (= 42). Immunoprecipitation of anti‐UH‐CIS6 antibodies on a normal human brain lysate was performed to identify the in vivo antibody target of UH‐CIS6. The cellular expression of an in vivo candidate target was investigated by immunohistochemistry using MS brain tissue sections. Antibody reactivity toward UH‐CIS6 was detected in a significantly increased proportion of CSF samples from CIS and RR‐MS patients as compared with neurological controls (= 0.046). We identified and confirmed coronin‐1a as the in vivo antibody target for UH‐CIS6. Furthermore, coronin‐1a was expressed by T cells and macrophages in an active MS lesion. Together, these results demonstrate that coronin‐1a is a novel antibody target for CIS and MS.  相似文献   

15.
The red‐spotted grouper Epinephelus akaara (E. akaara) is one of the most economically important marine fish in China, Japan and South‐East Asia and is a threatened species. The species is also considered a good model for studies of sex inversion, development, genetic diversity and immunity. Despite its importance, molecular resources for E. akaara remain limited and no reference genome has been published to date. In this study, we constructed a chromosome‐level reference genome of E. akaara by taking advantage of long‐read single‐molecule sequencing and de novo assembly by Oxford Nanopore Technology (ONT) and Hi‐C. A red‐spotted grouper genome of 1.135 Gb was assembled from a total of 106.29 Gb polished Nanopore sequence (GridION, ONT), equivalent to 96‐fold genome coverage. The assembled genome represents 96.8% completeness (BUSCO) with a contig N50 length of 5.25 Mb and a longest contig of 25.75 Mb. The contigs were clustered and ordered onto 24 pseudochromosomes covering approximately 95.55% of the genome assembly with Hi‐C data, with a scaffold N50 length of 46.03 Mb. The genome contained 43.02% repeat sequences and 5,480 noncoding RNAs. Furthermore, combined with several RNA‐seq data sets, 23,808 (99.5%) genes were functionally annotated from a total of 23,923 predicted protein‐coding sequences. The high‐quality chromosome‐level reference genome of E. akaara was assembled for the first time and will be a valuable resource for molecular breeding and functional genomics studies of red‐spotted grouper in the future.  相似文献   

16.
The free-living flatworm Macrostomum lignano is used as a model in a range of research fields—including aging, bioadhesion, stem cells, and sexual selection—culminating in the establishment of genome assemblies and transgenics. However, the Macrostomum community has run into a roadblock following the discovery of an unusual genome organization in M. lignano, which could now impair the development of additional resources and tools. Briefly, M. lignano has undergone a whole-genome duplication, followed by rediploidization into a 2n = 8 karyotype (distinct from the canonical 2n = 6 karyotype in the genus). Although this karyotype appears visually diploid, it is in fact a hidden tetraploid (with rarer 2n = 9 and 2n = 10 individuals being pentaploid and hexaploid, respectively). Here, we report on a phylogenetically informed search for close relatives of M. lignano, aimed at uncovering alternative Macrostomum models with the canonical karyotype and a simple genome organization. We taxonomically describe three new species: the first, Macrostomum janickei n. sp., is the closest known relative of M. lignano and shares its derived genome organization; the second, Macrostomum mirumnovem n. sp., has an even more unusual genome organization, with a highly variable karyotype based on a 2n = 9 base pattern; and the third, Macrostomum cliftonensis n. sp., does not only show the canonical 2n = 6 karyotype, but also performs well under standard laboratory culture conditions and fulfills many other requirements. M. cliftonensis is a viable candidate for replacing M. lignano as the primary Macrostomum model, being outcrossing and having an estimated haploid genome size of only 231 Mbp.  相似文献   

17.
Allopolyploidization is widespread and has played a major role in flowering plant diversification. Genomic changes are common consequences of allopolyploidization, but their mechanisms of occurrence and dynamics over time are still poorly understood. Coffea arabica, a recently formed allotetraploid, was chosen as a model to investigate genetic changes in allopolyploid using an approach that exploits next‐generation sequencing technologies. Genes affected by putative homoeolog loss were inferred by comparing the numbers of single‐nucleotide polymorphisms detected using RNA‐seq in individual accessions of C. arabica, and between accessions of its two diploid progenitor species for common sequence positions. Their physical locations were investigated and clusters of genes exhibiting homoeolog loss were identified. To validate these results, genome sequencing data were generated from one accession of C. arabica and further analyzed. Genomic rearrangements involving homoeologous exchanges appear to occur in C. arabica and to be a major source of genetic diversity. At least 5% of the C. arabica genes were inferred to have undergone homoeolog loss. The detection of a large number of homoeologous exchange events (HEEs) shared by all accessions of C. arabica strongly reinforces the assumption of a single allopolyploidization event. Furthermore, HEEs were specific to one or a few accessions, suggesting that HEE accumulates gradually. Our results provide evidence for the important role of HEE in allopolyploid genome evolution.  相似文献   

18.
Limited information is available on the identity of antigens targeted by antibodies present in cerebrospinal fluid (CSF) of patients with clinically isolated syndrome (CIS). The aim of this study was to identify novel antigens for CIS and investigate their prognostic potential to predict conversion to multiple sclerosis (MS). We applied serological antigen selection (SAS) to identify antigens interacting with antibodies present in the pooled CSF from four CIS patients, who developed MS. Antibody reactivity towards CIS antigens identified by SAS was tested in CSF and serum from patients with CIS (= 123/= 108), MS (= 65/= 44), and other (inflammatory) neurological diseases (= 75/= 38) as well as in healthy control sera (= 44). Using SAS, a panel of six novel CIS candidate antigens was identified. CSF antibody reactivity was detected in both CIS and relapsing‐remitting (RR) MS. Serum reactivity was significantly increased in CIS and RR‐MS as compared with controls (= 0.03). For two antigens, the frequency of antibody‐positive patients was higher in CIS patients who converted to MS as compared with CIS patients without conversion. We identified novel CIS antigens to which antibody reactivity was primarily detected in CIS and RR‐MS as compared to controls. Possible prognostic potential could be demonstrated for two antigens.  相似文献   

19.
The online resource http://www.plantrdnadatabase.com/ stores information on the number, chromosomal locations and structure of the 5S and 18S‐5.8S‐26S (35S) ribosomal DNAs (rDNA) in plants. This resource was exploited to study relationships between rDNA locus number, distribution, the occurrence of linked (L‐type) and separated (S‐type) 5S and 35S rDNA units, chromosome number, genome size and ploidy level. The analyses presented summarise current knowledge on rDNA locus numbers and distribution in plants. We analysed 2949 karyotypes, from 1791 species and 86 plant families, and performed ancestral character state reconstructions. The ancestral karyotype (2= 16) has two terminal 35S sites and two interstitial 5S sites, while the median (2= 24) presents four terminal 35S sites and three interstitial 5S sites. Whilst 86.57% of karyotypes show S‐type organisation (ancestral condition), the L‐type arrangement has arisen independently several times during plant evolution. A non‐terminal position of 35S rDNA was found in about 25% of single‐locus karyotypes, suggesting that terminal locations are not essential for functionality and expression. Single‐locus karyotypes are very common, even in polyploids. In this regard, polyploidy is followed by subsequent locus loss. This results in a decrease in locus number per monoploid genome, forming part of the diploidisation process returning polyploids to a diploid‐like state over time.  相似文献   

20.
Metastasis‐related mRNAs have showed great promise as prognostic biomarkers in various types of cancers. Therefore, we attempted to develop a metastasis‐associated gene signature to enhance prognostic prediction of breast cancer (BC) based on gene expression profiling. We firstly screened and identified 56 differentially expressed mRNAs by analysing BC tumour tissues with and without metastasis in the discovery cohort (GSE102484, n = 683). We then found 26 of these differentially expressed genes were associated with metastasis‐free survival (MFS) in the training set (GSE20685, n = 319). A metastasis‐associated gene signature built using a LASSO Cox regression model, which consisted of four mRNAs, can classify patients into high‐ and low‐risk groups in the training cohort. Patients with high‐risk scores in the training cohort had shorter MFS (hazard ratio [HR] 3.89, 95% CI 2.53‐5.98; P < 0.001), disease‐free survival (DFS) (HR 4.69, 2.93‐7.50; P < 0.001) and overall survival (HR 4.06, 2.56‐6.45; P < 0.001) than patients with low‐risk scores. The prognostic accuracy of mRNAs signature was validated in the two independent validation cohorts (GSE21653, n = 248; GSE31448, n = 246). We then developed a nomogram based on the mRNAs signature and clinical‐related risk factors (T stage and N stage) that predicted an individual's risk of disease, which can be assessed by calibration curves. Our study demonstrated that this 4‐mRNA signature might be a reliable and useful prognostic tool for DFS evaluation and will facilitate tailored therapy for BC patients at different risk of disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号