首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Communicating animals must balance fitness benefits against the costs of signaling, such as increased predation risk. Cetaceans communicate mainly with sound and near‐surface vocalizations can place signalers at risk from shallow‐diving top‐predators with acute hearing such as killer whales. Beaked whales are deep divers living in small cohesive groups with little social defense from predation. Little if anything is known about their acoustic communication. Here, eight Blainville's beaked whales were studied with suction cup attached DTags to provide the first report on social communication as a function of diving behavior for any of the 21 ziphiid species. Tagged whales produced two previously unrecorded signals with apparent communicative functions: (1) fast series of ultrasonic frequency modulated clicks (rasps) were recorded from six individuals, and (2) harmonically rich short whistles with a mean fundamental frequency of 12 kHz were recorded from one whale at up to 900 m depth, the deepest whistles recorded from a marine mammal. Blainville's were silent 80% of the time, whenever shallower than 170 m depth and during the prolonged (19 min) silent ascents from vocal dives. This behavior limits the ability of shallow‐diving predators to track Blainville's acoustically and may provide a striking example of the evolutionary influence of the risk of predation on animal communication.  相似文献   

2.
Toothed whales rely on sound to echolocate prey and communicate with conspecifics, but little is known about how extreme pressure affects pneumatic sound production in deep-diving species with a limited air supply. The short-finned pilot whale (Globicephala macrorhynchus) is a highly social species among the deep-diving toothed whales, in which individuals socialize at the surface but leave their social group in pursuit of prey at depths of up to 1000 m. To investigate if these animals communicate acoustically at depth and test whether hydrostatic pressure affects communication signals, acoustic DTAGs logging sound, depth and orientation were attached to 12 pilot whales. Tagged whales produced tonal calls during deep foraging dives at depths of up to 800 m. Mean call output and duration decreased with depth despite the increased distance to conspecifics at the surface. This shows that the energy content of calls is lower at depths where lungs are collapsed and where the air volume available for sound generation is limited by ambient pressure. Frequency content was unaffected, providing a possible cue for group or species identification of diving whales. Social calls may be important to maintain social ties for foraging animals, but may be impacted adversely by vessel noise.  相似文献   

3.
Groups of female and immature sperm whales live at low latitudes and show a stereotypical diving and foraging behavior with dives lasting about 45 min to depths of between 400 and 1200 m. In comparison, physically mature male sperm whales migrate to high latitudes where little is known about their foraging behavior and ecology. Here we use acoustic recording tags to study the diving and acoustic behavior of male sperm whales foraging off northern Norway. Sixty-five hours of tag data provide detailed information about the movements and sound repertoire of four male sperm whales performing 83 dives lasting between 6 and 60 min. Dives ranged in depth between 14 and 1860 m, with a median depth of 175 m, and 92% of the surfacings lasted less than 15 min. The four whales clicked for an average 91% (SD = 10) of the dive duration, where the first usual click was produced at depths ranging between 4 and 218 m and the last usual click at depths ranging between 1 and 1114 m. Echolocation buzzes, which are used as an indication of prey capture attempts, were emitted at depths between 17 and 1860 m, during both the descent and ascent phase of deep dives. The foraging behavior varied markedly with depth, with the timing and duration of prey capture attempts during shallow dives suggesting that the whales target more sparsely distributed prey. In contrast, deep dives involve frequent prey capture attempts and seem to target more dense food layers. The evidence of exploitation of different food layers, including epipelagic prey, is consistent with the hypothesis that male sperm whales may migrate to high latitudes to access a productive, multi-layered foraging habitat.  相似文献   

4.
A disparate selection of toothed whales (Odontoceti) share striking features of their acoustic repertoires including the absence of whistles and high frequency but weak (low peak-to-peak source level) clicks that have a relatively long duration and a narrow bandwidth. The non-whistling, high frequency click species include members of the family Phocoenidae, members of one genus of delphinids, Cephalorhynchus, the pygmy sperm whale, Kogia breviceps, and apparently the sole member of the family Pontoporiidae. Our review supports the 'acoustic crypsis' hypothesis that killer whale predation risk was the primary selective factor favouring an echolocation and communication system in cephalorhynchids, phocoenids and possibly Pontoporiidae and Kogiidae restricted to sounds that killer whales hear poorly or not at all (< 2 and > 100 kHz).  相似文献   

5.
During foraging dives, sperm whales (Physeter macrocephalus) produce long series of regular clicks at 0.5-2 s intervals interspersed with rapid-click buzzes called "creaks". Sound, depth and orientation recording Dtags were attached to 23 whales in the Ligurian Sea and Gulf of Mexico to test whether the behaviour of diving sperm whales supports the hypothesis that creaks are produced during prey capture. Sperm whales spent most of their bottom time within one or two depth bands, apparently feeding in vertically stratified prey layers. Creak rates were highest during the bottom phase: 99.8% of creaks were produced in the deepest 50% of dives, 57% in the deepest 15% of dives. Whales swam actively during the bottom phase, producing a mean of 12.5 depth inflections per dive. A mean of 32% of creaks produced during the bottom phase occurred within 10 s of an inflection (13x more than chance). Sperm whales actively altered their body orientation throughout the bottom phase with significantly increased rates of change during creaks, reflecting increased manoeuvring. Sperm whales increased their bottom foraging time when creak rates were higher. These results all strongly support the hypothesis that creaks are an echolocation signal adapted for foraging, analogous to terminal buzzes in taxonomically diverse echolocating species.  相似文献   

6.
Availability of preferred salmonid prey and a sufficiently quiet acoustic environment in which to forage are critical to the survival of resident killer whales (Orcinus orca) in the northeastern Pacific. Although piscivorous killer whales rely on echolocation to locate and track prey, the relationship between echolocation, movement, and prey capture during foraging by wild individuals is poorly understood. We used acoustic biologging tags to relate echolocation behavior to prey pursuit and capture during successful feeding dives by fish-eating killer whales in coastal British Columbia, Canada. The significantly higher incidence and rate of echolocation prior to fish captures compared to afterward confirms its importance in prey detection and tracking. Extremely rapid click sequences (buzzes) were produced before or concurrent with captures of salmon at depths typically exceeding 50 m, and were likely used by killer whales for close-range prey targeting, as in other odontocetes. Distinctive crunching and tearing sounds indicative of prey-handling behavior occurred at relatively shallow depths following fish captures, matching concurrent observations that whales surfaced with fish prior to consumption and often shared prey. Buzzes and prey-handling sounds are potentially useful acoustic signals for estimating foraging efficiency and determining if resident killer whales are meeting their energetic requirements.  相似文献   

7.
Humpback whales (Megaptera novaeangliae) exhibit a variety of foraging behaviours, but neither they nor any baleen whale are known to produce broadband clicks in association with feeding, as do many odontocetes. We recorded underwater behaviour of humpback whales in a northwest Atlantic feeding area using suction-cup attached, multi-sensor, acoustic tags (DTAGs). Here we describe the first recordings of click production associated with underwater lunges from baleen whales. Recordings of over 34000 'megapclicks' from two whales indicated relatively low received levels at the tag (between 143 and 154dB re 1 microPa pp), most energy below 2kHz, and interclick intervals often decreasing towards the end of click trains to form a buzz. All clicks were recorded during night-time hours. Sharp body rolls also occurred at the end of click bouts containing buzzes, suggesting feeding events. This acoustic behaviour seems to form part of a night-time feeding tactic for humpbacks and also expands the known acoustic repertoire of baleen whales in general.  相似文献   

8.
1. Empirical testing of optimal foraging models for breath-hold divers has been difficult. Here we report data from sound and movement recording DTags placed on 23 short-finned pilot whales off Tenerife to study the foraging strategies used to catch deep-water prey. 2. Day and night foraging dives had a maximum depth and duration of 1018 m and 21 min. Vocal behaviour during dives was consistent with biosonar-based foraging, with long series of echolocation clicks interspersed with buzzes. Similar buzzes have been associated with prey capture attempts in other echolocating species. 3. Foraging dives seemed to adapt to circadian rhythms. Deep dives during the day were deeper, but contained fewer buzzes (median 1), than night-time deep dives (median 5 buzzes). 4. In most deep (540-1019 m) daytime dives with buzzes, a downward directed sprint reaching up to 9 m s(-1) occurred just prior to a buzz and coincided with the deepest point in the dive, suggestive of a chase after escaping prey. 5. A large percentage (10-36%) of the drag-related locomotion cost of these dives (15 min long) is spent in sprinting (19-79 s). This energetic foraging tactic focused on a single or few prey items has not been observed previously in deep-diving mammals but resembles the high-risk/high-gain strategy of some terrestrial hunters such as cheetahs. 6. Deep sprints contrast with the expectation that deep-diving mammals will swim at moderate speeds optimized to reduce oxygen consumption and maximize foraging time at depth. Pilot whales may have developed this tactic to target a deep-water niche formed by large/calorific/fast moving prey such as giant squid.  相似文献   

9.
Sounds produced by northern bottlenose whales ( Hyperoodon ampullatus ) recorded in the Gully, a submarine canyon off Nova Scotia, consisted predominately of clicks. In 428 min of recordings no whistles were heard which could unequivocally be attributed to bottlenose whales. There were two major types of click series, initially distinguished by large differences in received amplitude. Loud clicks (produced by nearby whales socializing at the surface) were rapid, with short and variable interclick intervals (mean 0.07 sec; CV 71%). The frequency spectra of these were variable and often multimodal, with peak frequencies ranging between 2 and 22 kHz (mean 11 kHz, CV 59%). Clicks received at low amplitude (produced by distant whales, presumably foraging at depth) had more consistent interclick intervals (mean 0.40 sec, CV 12.5%), generally unimodal frequency spectra with a mean peak frequency of 24 kHz (CV 7%) and 3 dB bandwidth of 4 kHz. Echolocation interclick intervals may reflect the approximate search distance of an animal, in this case 300 m, comparable to that found for sperm whales. The relationship between click frequency and the size of object being investigated, suggests that 24 kHz would be optimal for an object of approximately 6 cm or more, consistent with the size range of their squid prey.  相似文献   

10.
Cetaceans produce a variety of vocalizations to communicate; however, little information exists on the acoustic behavior displayed by Commerson's dolphins (Cephalorhynchus commersonii) in the wild other than their echolocation behavior. Most available literature suggests that Commerson's dolphins do not produce any other sound type besides narrow‐band high‐frequency (NBHF) clicks, such that no signals are emitted below 100 kHz. We conducted acoustic recordings together with sightings to study the acoustic behavior of Commerson's dolphins in Bahia San Julian, Argentina. This is the first study that provides evidence that this species produces a variety of acoustic signals, including whistles and broad‐band clicks (BBC), with frequency content well below 100 kHz. Whistles were recorded mostly in the presence of mother and calf and were associated with parental behavior. BBC may be used for communication purposes by adults. These vocalizations are within the hearing range of killer whales and so could pose a risk of predation for Commerson's dolphins. Whether this population of Commerson's dolphins produce all these types of signals while they are in the open sea out of the waters of Bahía San Julián, which are apparently safe from predation, remains unknown.  相似文献   

11.
Toothed whales echolocating in the wild generate clicks with low repetition rates to locate prey but then produce rapid sequences of clicks, called buzzes, when attempting to capture prey. However, little is known about the factors that determine clicking rates or how prey type and behaviour influence echolocation-based foraging. Here we study Blainville's beaked whales foraging in deep water using a multi-sensor DTAG that records both outgoing echolocation clicks and echoes returning from mesopelagic prey. We demonstrate that the clicking rate at the beginning of buzzes is related to the distance between whale and prey, supporting the presumption that whales focus on a specific prey target during the buzz. One whale showed a bimodal relationship between target range and clicking rate producing abnormally slow buzz clicks while attempting to capture large echoic targets, probably schooling prey, with echo duration indicating a school diameter of up to 4.3m. These targets were only found when the whale performed tight circling manoeuvres spending up to five times longer in water volumes with large targets than with small targets. The result indicates that toothed whales in the wild can adjust their echolocation behaviour and movement for capture of different prey on the basis of structural echo information.  相似文献   

12.
Deep-diving foraging behaviour of sperm whales (Physeter macrocephalus)   总被引:1,自引:1,他引:0  
1. Digital tags were used to describe diving and vocal behaviour of sperm whales during 198 complete and partial foraging dives made by 37 individual sperm whales in the Atlantic Ocean, the Gulf of Mexico and the Ligurian Sea. 2. The maximum depth of dive averaged by individual differed across the three regions and was 985 m (SD = 124.3), 644 m (123.4) and 827 m (60.3), respectively. An average dive cycle consisted of a 45 min (6.3) dive with a 9 min (3.0) surface interval, with no significant differences among regions. On average, whales spent greater than 72% of their time in foraging dive cycles. 3. Whales produced regular clicks for 81% (4.1) of a dive and 64% (14.6) of the descent phase. The occurrence of buzz vocalizations (also called 'creaks') as an indicator of the foraging phase of a dive showed no difference in mean prey capture attempts per dive between regions [18 buzzes/dive (7.6)]. Sperm whales descended a mean of 392 m (144) from the start of regular clicking to the first buzz, which supports the hypothesis that regular clicks function as a long-range biosonar. 4. There were no significant differences in the duration of the foraging phase [28 min (6.0)] or percentage of the dive duration in the foraging phase [62% (7.3)] between the three regions, with an overall average proportion of time spent actively encountering prey during dive cycles of 0.53 (0.05). Whales maintained their time in the foraging phase by decreasing transit time for deeper foraging dives. 5. Similarity in foraging behaviour in the three regions and high diving efficiencies suggest that the success of sperm whales as mesopelagic predators is due in part to long-range echolocation of deep prey patches, efficient locomotion and a large aerobic capacity during diving.  相似文献   

13.

Aim

Understanding cetacean species' distributions and population structure over space and time is necessary for effective conservation and management. Geographic differences in acoustic signals may provide a line of evidence for population-level discrimination in some cetacean species. We use acoustic recordings collected over broad spatial and temporal scales to investigate whether global variability in echolocation click peak frequency could elucidate population structure in Blainville's beaked whale (Mesoplodon densirostris), a cryptic species well-studied acoustically.

Location

North Pacific, Western North Atlantic and Gulf of Mexico.

Time period

2004–2021.

Major taxa studied

Blainville's beaked whale.

Methods

Passive acoustic data were collected at 76 sites and 150 cumulative years of data were analysed to extract beaked whale echolocation clicks. Using an automated detector and subsequent weighted network clustering on spectral content and interclick interval of clicks, we determined the properties of a primary cluster of clicks with similar characteristics per site. These were compared within regions and across ocean basins and evaluated for suitability as population-level indicators.

Results

Spectral averages obtained from primary clusters of echolocation clicks identified at each site were similar in overall shape but varied in peak frequency by up to 8 kHz. We identified a latitudinal cline, with higher peak frequencies occurring in lower latitudes.

Main conclusions

It may be possible to acoustically delineate populations of Blainville's beaked whales. The documented negative correlation between signal peak frequency and latitude could relate to body size. Body size has been shown to influence signal frequency, with lower frequencies produced by larger animals, which are subsequently more common in higher latitudes for some species, although data are lacking to adequately investigate this for beaked whales. Prey size and depth may shape frequency content of echolocation signals, and larger prey items may occur in higher latitudes, resulting in lower signal frequencies of their predators.  相似文献   

14.
Big brown bats form large maternity colonies of up to 200 mothers and their pups. If pups are separated from their mothers, they can locate each other using vocalizations. The goal of this study was to systematically characterize the development of echolocation and communication calls from birth through adulthood to determine whether they develop from a common precursor at the same or different rates, or whether both types are present initially. Three females and their six pups were isolated from our captive breeding colony. We recorded vocal activity from postnatal day 1 to 35, both when the pups were isolated and when they were reunited with their mothers. At birth, pups exclusively emitted isolation calls, with a fundamental frequency range <20 kHz, and duration >30 ms. By the middle of week 1, different types of vocalizations began to emerge. Starting in week 2, pups in the presence of their mothers emitted sounds that resembled adult communication vocalizations, with a lower frequency range and longer durations than isolation calls or echolocation signals. During weeks 2 and 3, these vocalizations were extremely heterogeneous, suggesting that the pups went through a babbling stage before establishing a repertoire of stereotyped adult vocalizations around week 4. By week 4, vocalizations emitted when pups were alone were identical to adult echolocation signals. Echolocation and communication signals both appear to develop from the isolation call, diverging during week 2 and continuing to develop at different rates for several weeks until the adult vocal repertoire is established.  相似文献   

15.
The matched filter hypothesis proposes that the tuning of auditory sensitivity and the spectral character of calls will match in order to maximize auditory processing efficiency during courtship. In this study, we analyzed the acoustic structure of male calls and both male and female hearing sensitivities in the little torrent frog (Amolops torrentis), an anuran species who transmits acoustic signals across streams. The results were in striking contradiction to the matched filter hypothesis. Auditory brainstem response results showed that the best hearing range was 1.6–2 kHz consistent with the best sensitive frequency of most terrestrial lentic taxa, yet completely mismatched with the dominant frequency of conspecific calls (4.3 kHz). Moreover, phonotaxis tests show that females strongly prefer high‐frequency (4.3 kHz) over low‐frequency calls (1.6 kHz) regardless of ambient noise levels, although peripheral auditory sensitivity is highest in the 1.6–2 kHz range. These results are consistent with the idea that A. torrentis evolved from nonstreamside species and that high‐frequency calls evolved under the pressure of stream noise. Our results also suggest that female preferences based on central auditory system characteristics may evolve independently of peripheral auditory system sensitivity in order to maximize communication effectiveness in noisy environments.  相似文献   

16.
The narwhal (Monodon monoceros) is a high‐Arctic species inhabiting areas that are experiencing increases in sea temperatures, which together with reduction in sea ice are expected to modify the niches of several Arctic marine apex predators. The Scoresby Sound fjord complex in East Greenland is the summer residence for an isolated population of narwhals. The movements of 12 whales instrumented with Fastloc‐GPS transmitters were studied during summer in Scoresby Sound and at their offshore winter ground in 2017–2019. An additional four narwhals provided detailed hydrographic profiles on both summer and winter grounds. Data on diving of the whales were obtained from 20 satellite‐linked time‐depth recorders and 16 Acousonde? recorders that also provided information on the temperature and depth of buzzes. In summer, the foraging whales targeted depths between 300 and 850 m where the preferred areas visited by the whales had temperatures ranging between 0.6 and 1.5°C (mean = 1.1°C, SD = 0.22). The highest probability of buzzing activity during summer was at a temperature of 0.7°C and at depths > 300 m. The whales targeted similar depths at their offshore winter ground where the temperature was slightly higher (range: 0.7–1.7°C, mean = 1.3°C, SD = 0.29). Both the probability of buzzing events and the spatial distribution of the whales in both seasons demonstrated a preferential selection of cold water. This was particularly pronounced in winter where cold coastal water was selected and warm Atlantic water farther offshore was avoided. It is unknown if the small temperature niche of whales while feeding is because prey is concentrated at these temperature gradients and is easier to capture at low temperatures, or because there are limitations in the thermoregulation of the whales. In any case, the small niche requirements together with their strong site fidelity emphasize the sensitivity of narwhals to changes in the thermal characteristics of their habitats.  相似文献   

17.
Echolocating animals that forage in social groups can potentially benefit from eavesdropping on other group members, cooperative foraging or social defence, but may also face problems of acoustic interference and intra-group competition for prey. Here, we investigate these potential trade-offs of sociality for extreme deep-diving Blainville′s and Cuvier''s beaked whales. These species perform highly synchronous group dives as a presumed predator-avoidance behaviour, but the benefits and costs of this on foraging have not been investigated. We show that group members could hear their companions for a median of at least 91% of the vocal foraging phase of their dives. This enables whales to coordinate their mean travel direction despite differing individual headings as they pursue prey on a minute-by-minute basis. While beaked whales coordinate their echolocation-based foraging periods tightly, individual click and buzz rates are both independent of the number of whales in the group. Thus, their foraging performance is not affected by intra-group competition or interference from group members, and they do not seem to capitalize directly on eavesdropping on the echoes produced by the echolocation clicks of their companions. We conclude that the close diving and vocal synchronization of beaked whale groups that quantitatively reduces predation risk has little impact on foraging performance.  相似文献   

18.
Bats broadcast rapid sequences of echolocation calls, named ‘drinking buzzes’, when they approach water to drink on the wing. So far this phenomenon has received little attention. We recorded echolocation sequences of drinking bats for 12 species, for 11 of which we also recorded feeding buzzes. Based on the different sensorial tasks faced by feeding and drinking bats, we hypothesize that the drinking buzz structure will differ from that of feeding buzzes since unlike the latter drinking buzzes are not designed to detect and track mobile prey. We demonstrated that drinking buzzes are structurally different from feeding buzzes. We show that the buzz‐II phase common in feeding buzzes is absent in drinking buzzes; that is, call frequency is not lowered to broaden sonar beam since the task of drinking does not imply tracking fast‐moving targets. This finding indirectly confirms the role of buzz II in feeding buzzes. Pulse rate in drinking buzzes is also lower than in feeding buzzes, as predicted since the high pulse rate typical of feeding buzzes is important to update rapidly the relative location of moving targets. The most likely function of drinking buzzes is to guide a safe drinking manoeuvre, similar to ‘landing buzzes’ broadcast when bats land on the ground.  相似文献   

19.
We describe the acoustic behaviour of piscivorous killer whales in Norwegian and Icelandic waters. Whales were assigned to one of three activities (feeding, travelling or other), and sound recordings were made in their proximity with a single hydrophone and a digital audiotape (DAT) recorder. A quantitative analysis of the production of pulsed calls, whistles and echolocation clicks in the three activities revealed that there was a significant effect of activity on the production of these sound types. Both killer whales in Icelandic and Norwegian waters produced high rates of clicks and calls during feeding and low rates of click, calls and whistles during travelling. The differences can be used as acoustical markers and provides new possibilities for acoustic monitoring of killer whales in these areas. Based on the similarity between their prey choice, hunting strategies, phenotype and acoustic behaviour, we suggest that the killer whales in Icelandic and Norwegian waters belong to the same ecotype: Scandinavian herring-eating killer whales.  相似文献   

20.
The foraging and echolocation behaviour of Myotis evotis was investigated during substrate-gleaning and aerial-hawking attacks. Bats gleaned moths from both the ground and a bark-covered trellis, however, they were equally adept at capturing flying moths. The calls emitted by M. evotis during substrate-gleaning sequences were short, broadband, and frequency-modulated (FM). Three behavioural phases were identified: search, hover, and attack. Gleaning search calls were significantly longer in duration, lower in highest frequency, and larger in bandwidth than hover/attack calls. Calls were detected in only 68% of gleaning sequences, and when they were emitted, bats ceased calling 200 ms before attacking. Terminal feeding buzzes, the rapid increase in pulse repetition rate associated with an attempted prey capture, were never recorded during gleaning attacks. The echolocation calls uttered by M. evotis during aerial-hawking foraging sequences were also short duration, high frequency, FM calls. Two distinct acoustic phases were identified: approach and terminal. Approach calls were significantly different from terminal calls in all variables measured. Calls were detected in 100% of aerial-hawking attacks and terminal feeding buzzes were invariably produced. Gleaning hover/attack calls were spectrally similar to aerial approach calls, but were shorter in duration and emitted at a significantly lower (but constant) repetition rate than aerial signals. Although the foraging environment (flight cage contents) remained unchanged between tasks (substrate-gleaning vs. aerial-hawking), bats emitted significantly lower amplitude calls while gleaning. We conclude that M. evotis adjusts its echolocation behaviour to meet the perceptual demands (acoustical constraints) imposed by each foraging situations.Abbreviations BW bandwidth - CF constant frequency - dB SPL decibels sound pressure level - FM frequency modulated - HF highest frequency - LF lowest frequency - PF peak frequency Presented at the meeting Acoustic Images in Bat Sonar, a conference on FM echolocation honoring Donald R. Griffin's contributions to experimental biology (June 14–16, Brown University, Providence RI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号