首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The development of haem biosynthetic enzyme activity during normoblastic human erythropoiesis was examined in seven patients. The first and last enzymes of the haem biosynthetic pathway, ALA synthase and ferrochelatase, were assayed by radiochemical/high performance liquid chromatographic (HPLC) methods. An assay for ferrochelatase activity in human bone marrow was developed. Enzyme substrates were protoporphyrin IX and 59Fe2+ ions. 59Fe-labelled haem was isolated by organic solvent extraction/sorbent extraction followed by reversed-phase HPLC. Optimal activity occurred at pH 7.3 in the presence of ascorbic acid, in darkness and under anaerobic conditions. Haem production was proportional to cell number and was linear with time to 30 min. The assay was sensitive to the picomolar range of haem production. ALA synthase and ferrochelatase activity was assayed in four highly purified age-matched erythroid cell populations. ALA synthase activity was maximal in the most immature erythoid cells and diminished as the cells matured with an overall five fold loss of activity from proerythroblast to late erythroblast development. Ferrochelatase activity was, however, more stable with less than a two fold change in activity observed during the same period of erythroid differentiation. Maximal activity occurred in erythroid fractions enriched with intermediate erythroblasts. These results support sequential rather than simultaneous appearance of these enzymes during normoblastic erythropoiesis. Quantitative analysis of relative enzyme activity however indicates that at all times during erythroid differentiation ferrochelatase activity is present in excess to that theoretically required relative to ALA synthase activity since ALA and haem are not produced in stoichiometric amounts. The lability of ALA synthase versus the stability and gross relative excess of ferrochelatase activity indicates a far greater role for ALA synthase in the regulation of erythroid haem biosynthesis than for ferrochelatase.  相似文献   

2.
3.
The mature architecture of the photosynthetic membrane of the purple phototroph Rhodobacter sphaeroides has been characterised to a level where an atomic‐level membrane model is available, but the roles of the putative assembly proteins LhaA and PucC in establishing this architecture are unknown. Here we investigate the assembly of light‐harvesting LH2 and reaction centre‐light‐harvesting1‐PufX (RC‐LH1‐PufX) photosystem complexes using spectroscopy, pull‐downs, native gel electrophoresis, quantitative mass spectrometry and fluorescence lifetime microscopy to characterise a series of lhaA and pucC mutants. LhaA and PucC are important for specific assembly of LH1 or LH2 complexes, respectively, but they are not essential; the few LH1 subunits found in ΔlhaA mutants assemble to form normal RC‐LH1‐PufX core complexes showing that, once initiated, LH1 assembly round the RC is cooperative and proceeds to completion. LhaA and PucC form oligomers at sites of initiation of membrane invagination; LhaA associates with RCs, bacteriochlorophyll synthase (BchG), the protein translocase subunit YajC and the YidC membrane protein insertase. These associations within membrane nanodomains likely maximise interactions between pigments newly arriving from BchG and nascent proteins within the SecYEG‐SecDF‐YajC‐YidC assembly machinery, thereby co‐ordinating pigment delivery, the co‐translational insertion of LH polypeptides and their folding and assembly to form photosynthetic complexes.  相似文献   

4.
It has recently been shown that the biosynthetic route for both the d1‐haem cofactor of dissimilatory cd1 nitrite reductases and haem, via the novel alternative‐haem‐synthesis pathway, involves siroheme as an intermediate, which was previously thought to occur only as a cofactor in assimilatory sulphite/nitrite reductases. In many denitrifiers (which require d1‐haem), the pathway to make siroheme remained to be identified. Here we identify and characterize a sirohydrochlorin–ferrochelatase from Paracoccus pantotrophus that catalyses the last step of siroheme synthesis. It is encoded by a gene annotated as cbiX that was previously assumed to be encoding a cobaltochelatase, acting on sirohydrochlorin. Expressing this chelatase from a plasmid restored the wild‐type phenotype of an Escherichia coli mutant‐strain lacking sirohydrochlorin–ferrochelatase activity, showing that this chelatase can act in the in vivo siroheme synthesis. A ΔcbiX mutant in P. denitrificans was unable to respire anaerobically on nitrate, proving the role of siroheme as a precursor to another cofactor. We report the 1.9 Å crystal structure of this ferrochelatase. In vivo analysis of single amino acid variants of this chelatase suggests that two histidines, His127 and His187, are essential for siroheme synthesis. This CbiX can generally be identified in α‐proteobacteria as the terminal enzyme of siroheme biosynthesis.  相似文献   

5.
Arne Schumacher  Gerhart Drews 《BBA》1978,501(2):183-194
Cells of Rhodopseudomonas capsulata cultivated at an oxygen partial pressure of 400 mmHg in the dark contained 0.1 nmol or less total bacteriochlorophyll per mg membrane protein. The bacteriochlorophyll was found in the reaction center (10 pmol bacteriochlorophyll/mg membrane protein) and in the light harvesting bacteriochlorophyll I but not in the light harvesting bacteriochlorophyll II. Formation of the photosynthetic apparatus in those cells was induced by incubation at a very low oxygen tension in the dark. Reaction center bacteriochlorophyll and light harvesting bacteriochlorophyll increased three fold after 60 min of incubation at 1–2 mmHg (pO2). Light harvesting bacteriochlorophyll II increased strongly after 60 min and became dominating after 90 min of incubation. The total bacteriochlorophyll content doubled every 30 min, but synthesis of reaction center bacteriochlorophyll proceeded at much lower rates. Consequently the size of the photosynthetic unit (total bacteriochlorophyll/reaction center bacteriochlorophyll) increased from 15 to 52 during 150 min of incubation. The proteins of the photosynthetic apparatus were synthesized concomitantly with bacteriochlorophyll.Cells which were incubated at 0.5 mmHg (pO2) do not grow but form the photosynthetic apparatus. During the first hours of incubation light harvesting bacteriochlorophyll I and reaction center bacteriochlorophyll were the dominant bacteriochlorophyll species, but light harvesting bacteriochlorophyll II was synthesized only in small amounts. Total bacteriochlorophyll and reaction center bacteriochlorophyll increased from 30 min up until 210 min of incubation more than 10 fold. The final concentrations of total bacteriochlorophyll and reaction center bacteriochlorophyll were 8.6 nmol and 0.26 nmol per mg membrane protein, respectively. The three protein components of the reaction centers (mol. wts. 28 000, 24 000 and 21 000) and the protein of the light harvesting I complex (mol. wt. 12 000) were incorporated simultaneously. The protein of band 1 (mol. wt. 14 000) which was present in the isolated light harvesting complex II, was synthesized only in very small amounts. The proteins of bands 3 and 4 (mol. wt. 10 000 and 8000) however, which were shown to be associated with light harvesting bacteriochlorophyll II, were synthesized in noticeable amounts as was light harvesting bacteriochlorophyll II. In addition a protein with an apparent molecular weight of 45 000 showed a strong incorporation of 14C-labeled amino acids. This protein comigrates with one protein which was found to be associated with a green pigment excreted during incubation at 0.5 Torr into the medium. The in vivo-absorption maxima of this pigment complex were 660, 590, 540, 417 and 400 nm. The succinate oxidase and the NADH oxidase seemed to be incorporated into the newly formed intracytoplasmic membrane only in very small amounts. Thus, reaction center and light harvesting bacteriochlorophyll and their associated proteins were simultaneously synthesized, whereas light harvesting complex II is the variable part of the photosynthetic apparatus.  相似文献   

6.
The PufQ protein has been detected in vivo for the first time by Western blot (immunoblot) analyses of the chromatophore membranes of Rhodobacter capsulatus. The PufQ protein was not visible in Western blots of membranes of a mutant (delta RC6) lacking the puf operon but appeared in membranes of the same mutant to which the pufQ gene had been added in trans. It was also detected in elevated amounts in a mutant (CB1200) defective in two bch genes and unable, therefore, to make bacteriochlorophyll. The extremely hydrophobic nature of the PufQ protein was also apparent in these studies since it was not extracted from chromatophores by 3% (wt/vol) n-octyl-beta-D-glucopyranoside, a procedure which solubilized the reaction center and light-harvesting complexes. During adaptation of R. capsulatus from aerobic to semiaerobic growth conditions (during which time the synthesis of bacteriochlorophyll was induced), the PufQ protein was observed to increase to the level of detection in the developing chromatophore fraction approximately 3 h after the start of the adaptation. The enzyme, S-adenosyl-L-methionine:magnesium protoporphyrin methyltransferase, also increased in amount in the developing chromatophore fraction but was present in a cell membrane fraction at the start of the adaptation as well.  相似文献   

7.
The photosynthetic unit of Rhodopseudomonas viridis contains a reaction centre (P960) and a light harvesting complex (B1015). Immune electron microscopy combined with image processing has allowed the central core of the photosynthetic unit to be identified as the reaction centre and the surrounding protein ring as the light harvesting complex. This light harvesting complex, subdivided into twelve subunits was shown to contain 24 bacteriochlorophyll b molecules. A model is presented which may account for the far red shift of the Qy absorption of the bacteriochlorophyll b molecules in vivo.  相似文献   

8.
Chlorophylls, magnesium-containing tetrapyrrolic pigments of photosynthesis, are widely-distributed in Nature and participate in both light harvesting and in the transduction of light energy to chemical energy for the photosynthetic fixation of carbon dioxide. We briefly discuss the extensive role of various isotopic labelling techniques in elucidating the pathway of tetrapyrrole-pigment biosynthesis and we acknowledge the classic and meticulous research of David Shemin who, approximately 50 years ago, introduced isotopic tracer techniques with 15N and 14C isotopes to study the biosynthesis of the carbon/nitrogen macrocycle of haem, an iron tetrapyrrole. The main focus of this review is the application of mass spectrometry and 18O labelling to the study of the incorporation of oxygen atoms from molecular oxygen or water into the periphery of the chlorophyll macrocycle during biosynthesis and their loss during degradation and light acclimation. In particular, we review the mechanism of formation of the isocyclic ring of chlorophylls, in higher plants, green algae and various photosynthetic bacteria, which concomitantly incurs formation of the 131-oxo group that is present in all photosynthetically-active chlorophylls. In addition we discuss the formation of the ubiquitous 133- and 173-carboxyl groups and also the formation of the 7-formyl group of chlorophyll b and the 3-acetyl group of bacteriochlorophyll a. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
1) A number of overlapping clones have been isolated from a Rhodobacter sphaeroides gene bank. Following conjugative gene transfer from Escherichia coli these clones restore a wild type phenotype to several mutants unable to synthesise bacteriochlorophyll. 2) The insert DNA was analysed by restriction mapping and together the clones form the basis of the first restriction map of the 45 kb photosynthetic gene cluster of Rb. sphaeroides. 3) This cluster is bounded on one side by puh A encoding the reaction centre H polypeptide and on the other by the puf operon encoding reaction centre L and M apoproteins and light harvesting LH1 and polypeptides. 4) DNA fragments from the 45 kb cluster were used to probe genomic DNA from other photosynthetic bacteria. Using heterologous hybridisation conditions, a significant degree of homology is shown between Rb. sphaeroides and these other bacteria, suggesting close evolutionary links with Rb. capsulatus in particular.  相似文献   

10.
Photosynthetic bradyrhizobia are nitrogen-fixing symbionts colonizing the stem and roots of some leguminous plants like Aeschynomene. The effect of oxygen and light on the formation of the photosynthetic apparatus of Bradyrhizobium sp. C7T1 strain is described here. Oxygen is required for growth, but at high concentration inhibits the synthesis of bacteriochlorophyll (BChl) and of the photosynthetic apparatus. However, we show that in vitro, aerobic photosynthetic electron transport occurred leading to ADP photophosphorylation. The expression of the photosynthetic apparatus was regulated by oxygen in a manner which did not agree with earlier results in other photosynthetic bradyrhizobia since BChl accumulation was the highest under microaerobic conditions. This strain produces photosynthetic pigments when grown under cyclic illumination or darkness. However, under continuous white light illumination, a Northern blot analysis of the puf operon showed that, the expression of the photosynthetic genes of the antenna was considerable. Under latter conditions BChl accumulation in the cells was dependent on the oxygen concentration. It was not detectable at high oxygen tensions but became accumulated under low oxygen (microaerobiosis). It is known that in photosynthetic bradyrhizobia bacteriophytochrome photoreceptor (BphP) partially controls the synthesis of the photosystem in response to light. In C7T1 strain far-red light illumination did not stimulate the synthesis of the photosynthetic apparatus suggesting the presence of a non-functional BphP-mediated light regulatory mechanism.  相似文献   

11.
Heme is a cofactor for proteins participating in many important cellular processes, including respiration, oxygen metabolism and oxygen binding. The key enzyme in the heme biosynthesis pathway is ferrochelatase (protohaem ferrolyase, EC 4.99.1.1), which catalyzes the insertion of ferrous iron into protoporphyrin IX. In higher plants, the ferrochelatase enzyme is localized not only in mitochondria, but also in chloroplasts. The plastidic type II ferrochelatase contains a C-terminal chlorophyll a/b (CAB) motif, a conserved hydrophobic stretch homologous to the CAB domain of plant light harvesting proteins and light-harvesting like proteins. This type II ferrochelatase, found in all photosynthetic organisms, is presumed to have evolved from the cyanobacterial ferrochelatase. Here we describe a detailed enzymological study on recombinant, refolded and functionally active type II ferrochelatase (FeCh) from the cyanobacterium Synechocystis sp. PCC 6803. A protocol was developed for the functional refolding and purification of the recombinant enzyme from inclusion bodies, without truncation products or soluble aggregates. The refolded FeCh is active in its monomeric form, however, addition of an N-terminal His6-tag has significant effects on its enzyme kinetics. Strikingly, removal of the C-terminal CAB-domain led to a greatly increased turnover number, kcat, compared to the full length protein. While pigments isolated from photosynthetic membranes decrease the activity of FeCh, direct pigment binding to the CAB domain of FeCh was not evident.  相似文献   

12.
N-Methylprotoporphyrin dimethyl ester inhibits ferrochelatase in isolated membranes of Rhodopseudomonas sphaeroides at low concentrations (around 10 nm). Full inhibition developed after a short lag phase. The inhibition was non-competitive with porphyrin substrate. Addition of inhibitor to growing cultures of Rps. sphaeroides caused a decrease (near 40%) in cytochrome content and a severe inhibition of ferrochelatase; the excretion of haem into the medium by cell suspensions was also severely inhibited. The addition of N-methylprotoporphyrin dimethyl ester to suspensions of photosynthetically competent Rps. sphaeroides Ga caused excretion of Mg-protoporphyrin monomethyl ester. When added to mutants V3 and O1, magnesium divinylphaeoporphyrin a5 monomethyl ester and 2-devinyl-2-hydroxyethylphaeophorbide a were excreted, with maximum effect at around 3 microM-inhibitor in the medium. The results are interpreted to suggest that the inhibitor decreases concentration of intracellular haem, which normally controls the activity of 5-aminolaevulinate synthetase. Unregulated activity of this enzyme leads to overproduction of protoporphyrin, which is diverted to the bacteriochlorophyll pathway. Further control operates at magnesium protoporphyrin ester conversion in normal cells.  相似文献   

13.
14.
The group of homoiochlorophyllous resurrection plants evolved the unique capability to survive severe drought stress without dismantling the photosynthetic machinery. This implies that they developed efficient strategies to protect the leaves from reactive oxygen species (ROS) generated by photosynthetic side reactions. These strategies, however, are poorly understood. Here, we performed a detailed study of the photosynthetic machinery in the homoiochlorophyllous resurrection plant Craterostigma pumilum during dehydration and upon recovery from desiccation. During dehydration and rehydration, C. pumilum deactivates and activates partial components of the photosynthetic machinery in a specific order, allowing for coordinated shutdown and subsequent reinstatement of photosynthesis. Early responses to dehydration are the closure of stomata and activation of electron transfer to oxygen accompanied by inactivation of the cytochrome b6f complex leading to attenuation of the photosynthetic linear electron flux (LEF). The decline in LEF is paralleled by a gradual increase in cyclic electron transport to maintain ATP production. At low water contents, inactivation and supramolecular reorganization of photosystem II becomes apparent, accompanied by functional detachment of light‐harvesting complexes and interrupted access to plastoquinone. This well‐ordered sequence of alterations in the photosynthetic thylakoid membranes helps prepare the plant for the desiccated state and minimize ROS production.  相似文献   

15.
Lactococcus lactis is a fermenting Gram‐positive bacterium widely used for production of dairy products. Lacking haem biosynthesis genes, L. lactis can still shift to an energetically favourable respiratory metabolism by activating a terminal cytochrome bd oxidase when haem is added to an aerated culture. Haem intracellular homeostasis is mediated by the hrtRBA operon encoding the conserved membrane HrtBA haem efflux permease and the unique intracellular haem sensor and regulator, HrtR. Here we report that membrane‐associated menaquinones (MK) favour the accumulation of reduced haem in membranes. An oxidative environment, provided by oxygen, prevents and reverses haemin reduction by MK and thus limits haem accumulation in membranes. HrtBA counteracts MK‐dependent membrane retention of excess haem in membrane, suggesting direct efflux from this compartment. Moreover, both HrtBA and MK‐mediated reduction have a strong impact on haem intracellular pools, as determined via HrtR haem sensor induction, suggesting that intracellular haem acquisition is controlled at the membrane level without the need for dedicated import systems. Our conclusions lead to a new hypothesis of haem acquisition and regulation in which HrtBA and the bacterial membrane have central roles in L. lactis.  相似文献   

16.
During dimethyl sulphoxide-induced differentiation of DS-19 murine erythroleukaemia (MEL) cells, the activity of the terminal enzyme of the haem-biosynthetic pathway, ferrochelatase (protohaem ferrolyase, EC 4.99.1.1), is thought to be the rate-limiting step for haem production. Differentiation of induced MEL cells in the presence of exogeneously supplied protoporphyrin IX showed that total haem production was affected by added porphyrin only after 48 h. These data suggest that iron insertion, the terminal step, is rate-limiting during the first 48 h of differentiation. Addition of low levels of diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine to differentiating cultures resulted in decreased haem production and decreased ferrochelatase activity. N-Methylprotoporphyrin at nanomolar concentrations also strongly inhibited ferrochelatase activity, but had no inhibitory effect on cellular haem production. The bivalent cations Co2+, Cd2+ and Mn2+ were tested for their effect on haem production and ferrochelatase activity. All three metals were found to inhibit both haem formation and ferrochelatase activity, with Mn2+ being the strongest effector. These data, together with those previously published, suggest that the terminal step in haem biosynthesis is rate-limiting during the early stages of differentiation in MEL cells.  相似文献   

17.
Ferrochelatase (EC 4.99.1.1), the terminal enzyme in the heme biosynthetic pathway, catalyzes the insertion of Fe2+ into protoporphyrin IX, generating heme. In vitro assays have shown that all characterized ferrochelatases can also incorporate Zn2+ into protoporphyrin IX. Previously Zn2+ has been observed at an inner metal binding site close to the porphyrin binding site. Mg2+, which stimulates Zn2+ insertion by Bacillus subtilis ferrochelatase, has been observed at an outer metal binding site. Exchange of Glu272 to a serine eliminated the stimulative effect of Mg2+. We found that Zn2+ quenched the fluorescence of B. subtilis ferrochelatase and this quenching was used to estimate the metal affinity. Trp230 was identified as the intrinsic fluorophore responsible for the observed quenching pattern. The affinity for Zn2+ could be increased by incubating the ferrochelatase with the transition state analogue N-methyl mesoporphyrin IX, which reflected a close collaborative arrangement between the two substrates in the active site. We also showed that the affinity for Zn2+ was lowered in the presence of Mg2+ and that bound Zn2+ was released upon binding of Mg2+. In the ferrochelatase with a Glu272Ser modification, the interaction between Zn2+ and Mg2+ was abolished. It could thereby be demonstrated that the presence of a metal at one metal binding site affected the metal affinity of another, providing the enzyme with a site that regulates the enzymatic activity.  相似文献   

18.
Photosystems must balance between light harvesting to fuel the photosynthetic process for CO2 fixation and mitigating the risk of photodamage due to absorption of light energy in excess. Eukaryotic photosynthetic organisms evolved an array of pigment-binding proteins called light harvesting complexes constituting the external antenna system in the photosystems, where both light harvesting and activation of photoprotective mechanisms occur. In this work, the balancing role of CP29 and CP26 photosystem II antenna subunits was investigated in Chlamydomonas reinhardtii using CRISPR-Cas9 technology to obtain single and double mutants depleted of monomeric antennas. Absence of CP26 and CP29 impaired both photosynthetic efficiency and photoprotection: Excitation energy transfer from external antenna to reaction centre was reduced, and state transitions were completely impaired. Moreover, differently from higher plants, photosystem II monomeric antenna proteins resulted to be essential for photoprotective thermal dissipation of excitation energy by nonphotochemical quenching.  相似文献   

19.
1. We have studied the kinetics of the conversion of 5-aminolaevulinate into haem and haem precursors in homogenates of livers of rats and chick embryos. Homogenates of fresh liver from both species efficiently convert 5-aminolaevulinate into haem. After frozen storage for 1 year, homogenates of rat, but not chick, liver have decreased rates of formation of haem with accumulation of more protoporphyrin. The rate of haem formation after storage is restored by addition of Fe2+ and menadione. 2. At all initial concentrations of 5-aminolaevulinate tested (2 microM-1 mM), homogenates of rat liver accumulate less protoporphyrin than haem. In contrast, homogenates of chick embryo liver accumulate more protoporphyrin than haem at concentration of 5-aminolaevulinate greater than 10 microM. Conversion of protoporphyrin into haem by homogenates of fresh or frozen chick embryo liver is not increased by addition of Fe2+. 3. Homogenates of liver from both species accumulate porphobilinogen; the kinetic parameters for this process reflect those of 5-aminolaevulinate dehydratase. 4. The results show that the rate-limiting enzyme for the hepatic conversion of 5-aminolaevulinate into protoporphyrin is porphobilinogen deaminase. In addition, chick liver, compared with rat liver, has only about one-fifth the activity of ferrochelatase, the final enzyme of the haem biosynthetic pathway, which inserts Fe2+ into protoporphyrin to form haem. 5. Comparison of these results with previous studies indicates that the homogenate system described here provides physiologically and clinically relevant information for study of hepatic haem synthesis and its control.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号