共查询到20条相似文献,搜索用时 0 毫秒
1.
Ann-Kathrin V. Schlesselmann Jamie Cooper Nicolas Dussex Bruce C. Robertson 《Ibis》2023,165(1):288-296
Understanding how climatic and environmental changes, as well as human activities, induce changes in the distribution and population size of avian species refines our ability to predict future impacts on threatened species. Using multilocus genetic data, we show that the population of a threatened New Zealand endemic open-habitat specialist, the Black-fronted Tern Chlidonias albostriatus – in contrast to forest specialists – expanded during the last glacial period. The population has decreased subsequently despite the availability of extensive open habitat after human arrival to New Zealand. We conclude that population changes for open habitat specialists such as Black-fronted Terns in pre-human New Zealand were habitat-dependent, similar to Northern Hemisphere cold-adapted species, whereas post-human settlement populations were constrained by predators independent of habitat availability, similar to other island endemic species. 相似文献
2.
Marlene Wæge Stubberud Ane Marlene Myhre Håkon Holand Thomas Kvalnes Thor Harald Ringsby Bernt‐Erik Sæther Henrik Jensen 《Molecular ecology》2017,26(9):2449-2465
The ratio between the effective and the census population size, , is an important measure of the long‐term viability and sustainability of a population. Understanding which demographic processes that affect most will improve our understanding of how genetic drift and the probability of fixation of alleles is affected by demography. This knowledge may also be of vital importance in management of endangered populations and species. Here, we use data from 13 natural populations of house sparrow (Passer domesticus) in Norway to calculate the demographic parameters that determine . Using the global variance‐based Sobol’ method for the sensitivity analyses, we found that was most sensitive to demographic variance, especially among older individuals. Furthermore, the individual reproductive values (that determine the demographic variance) were most sensitive to variation in fecundity. Our results draw attention to the applicability of sensitivity analyses in population management and conservation. For population management aiming to reduce the loss of genetic variation, a sensitivity analysis may indicate the demographic parameters towards which resources should be focused. The result of such an analysis may depend on the life history and mating system of the population or species under consideration, because the vital rates and sex–age classes that is most sensitive to may change accordingly. 相似文献
3.
ELSEMARIE KRAGH NIELSEN CARSTEN RIIS OLESEN CINO PERTOLDI PETER GRAVLUND JAMES S. F. BARKER NADIA MUCCI ETTORE RANDI VOLKER LOESCHCKE 《Biological journal of the Linnean Society. Linnean Society of London》2008,95(4):688-701
The red deer (Cervus elaphus) population in Denmark became almost extinct in recent historical times due to over‐hunting. The species has subsequently recovered within remote areas, but non‐Danish individuals have been introduced at several localities. To assess genetic structure, past demographic history, and the possibility of a still existing original stock, we analysed 349 specimens from 11 geographically separate areas and from three enclosed areas, genotyping 11 microsatellite loci. Moreover, an 826‐bp fragment of the control region of the mitochondrial DNA was sequenced for 116 recent specimens and seven museum specimens. There was a significant difference in mean expected heterozygosity (HE) between the three enclosed areas and the 11 unenclosed areas. Significant departures from Hardy–Weinberg equilibrium were observed in the three enclosed areas and in nine of the unenclosed areas. The overall degree of genetic differentiation among all 14 areas was significant (FST = 0.09, P < 0.01), primarily because the mean pairwise FST for the three enclosed areas was significantly higher than that for the 11 unenclosed areas. A Bayesian clustering procedure detected three genetically distinct populations and indicated reduced gene flow between the enclosed and unenclosed areas. The individuals in the unenclosed areas show genotypic mixture, presumably as a result of gene flow among them. Markov Chain Monte Carlo simulations, based on the genealogical history of the microsatellite alleles, suggest a drastic decline in the effective population size of the enclosed areas some 188–474 years ago. Mitochondrial DNA analysis of the recent specimens showed seven haplotypes. Individuals from the enclosed Jægersborg Dyrehave contain haplotypes that occur all over Denmark and also are found in Western Europe. A close relationship between Scandinavian and Western European red deer is most likely. Only individuals from the unenclosed Lindenborg Estate and the enclosed Tofte Skov did not group with any other Danish individuals. As six of seven museum specimens had haplotypes also found in modern Danish samples, the current population of red deer in Denmark is genetically close to the original Danish red deer. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 688–701. 相似文献
4.
María I. Cádiz;Aja Noersgaard Buur Tengstedt;Iben Hove Sørensen;Emma Skindbjerg Pedersen;Anthony David Fox;Michael M. Hansen; 《Evolutionary Applications》2024,17(9):e70008
Anthropogenic impact has transitioned from threatening already rare species to causing significant declines in once numerous organisms. Long-tailed duck (Clangula hyemalis) and velvet scoter (Melanitta fusca) were once important quarry sea duck species in NW Europe, but recent declines resulted in their reclassification as vulnerable on the IUCN Red List. We sequenced and assembled genomes for both species and resequenced 15 individuals of each. Using analyses based on site frequency spectra and sequential Markovian coalescence, we found C. hyemalis to show more historical demographic stability, whereas M. fusca was affected particularly by the Last (Weichselian) Glaciation. This likely reflects C. hyemalis breeding continuously across the Arctic, with cycles of glaciation primarily shifting breeding areas south or north without major population declines, whereas the more restricted southern range of M. fusca would lead to significant range contraction during glaciations. Both species showed evidence of declines over the past thousands of years, potentially reflecting anthropogenic pressures with the recent decline indicating an accelerated process. Analysis of runs of homozygosity (ROH) showed low but nontrivial inbreeding, with FROH from 0.012 to 0.063 in C. hyemalis and ranging from 0 to 0.047 in M. fusca. Lengths of ROH suggested that this was due to ongoing background inbreeding rather than recent declines. Overall, despite demographically important declines, this has not yet led to strong inbreeding and genetic erosion, and the most pressing conservation concern may be the risk of density-dependent (Allee) effects. We recommend monitoring of inbreeding using ROH analysis as a cost-efficient method to track future developments to support effective conservation of these species. 相似文献
5.
We examined allelic variation at 22 nuclear-encoded markers (21 microsatellites and one anonymous locus) and mitochondrial (mt)DNA in two geographical samples of the endangered cyprinid fish Notropis mekistocholas (Cape Fear shiner). Genetic diversity was relatively high in comparison to other endangered vertebrates, and there was no evidence of small population effects despite the low abundance reported for the species. Significant heterogeneity (following Bonferroni correction) in allele distribution at three microsatellites and in haplotype distribution in mtDNA was detected between the two localities. This heterogeneity may be due to reduced gene flow caused by a dam built in the early 1900 s. Bayesian coalescent analysis of microsatellite variation indicated that effective population size of Cape Fear shiners has declined in recent times (11-25 435 years ago, with highest posterior probabilities between 126 and 2007 years ago) by one-two orders of magnitude, consistent with the observed decline in abundance of the species. A decline in effective size was not indicated by analysis of mtDNA, where sequence polymorphism appeared to carry the signature of an older expansion phase that dated to the Pleistocene ( approximately 12 700 > 1 million years ago). Cape Fear shiners thus appear to have undergone an expansion phase following a glacial cycle but to have declined significantly in more recent times. These results suggest that rapidly evolving markers such as microsatellites may constitute a suitable tool when inferring recent demographic dynamics of populations. 相似文献
6.
Martin Husemann Rachel Nguyen Baoqing Ding Patrick D. Danley 《Molecular ecology》2015,24(11):2686-2701
We estimated the effective population sizes (Ne) and tested for short‐term temporal demographic stability of populations of two Lake Malawi cichlids: Maylandia benetos, a micro‐endemic, and Maylandia zebra, a widespread species found across the lake. We sampled a total of 351 individuals, genotyped them at 13 microsatellite loci and sequenced their mitochondrial D‐loop to estimate genetic diversity, population structure, demographic history and effective population sizes. At the microsatellite loci, genetic diversity was high in all populations. Yet, genetic diversity was relatively low for the sequence data. Microsatellites yielded mean Ne estimates of 481 individuals (±99 SD) for M. benetos and between 597 (±106.3 SD) and 1524 (±483.9 SD) individuals for local populations of M. zebra. The microsatellite data indicated no deviations from mutation–drift equilibrium. Maylandia zebra was further found to be in migration–drift equilibrium. Temporal fluctuations in allele frequencies were limited across the sampling period for both species. Bayesian Skyline analyses suggested a recent expansion of M. zebra populations in line with lake‐level fluctuations, whereas the demographic history of M. benetos could only be estimated for the very recent past. Divergence time estimates placed the origin of M. benetos within the last 100 ka after the refilling of the lake and suggested that it split off the sympatric M. zebra population. Overall, our data indicate that micro‐endemics and populations in less favourable habitats have smaller Ne, indicating that drift may play an important role driving their divergence. Yet, despite small population sizes, high genetic variation can be maintained. 相似文献
7.
A common goal of population genomics and molecular ecology is to reconstruct the demographic history of a species of interest. A pair of powerful tools based on the sequentially Markovian coalescent have been developed to infer past population sizes using genome sequences. These methods are most useful when sequences are available for only a limited number of genomes and when the aim is to study ancient demographic events. The results of these analyses can be difficult to interpret accurately, because doing so requires some understanding of their theoretical basis and of their sensitivity to confounding factors. In this practical review, we explain some of the key concepts underpinning the pairwise and multiple sequentially Markovian coalescent methods (PSMC and MSMC, respectively). We relate these concepts to the use and interpretation of these methods, and we explain how the choice of different parameter values by the user can affect the accuracy and precision of the inferences. Based on our survey of 100 PSMC studies and 30 MSMC studies, we describe how the two methods are used in practice. Readers of this article will become familiar with the principles, practice, and interpretation of the sequentially Markovian coalescent for inferring demographic history. 相似文献
8.
The Haute Island mouflon (Ovis aries) population is isolated on one small (6.5 km2) island of the remote Kerguelen archipelago. Given a promiscuous mating system, a cyclic demography and a strong female-biased sex ratio after population crashes, we expected a low effective population size (Ne). We estimated Ne using demographic and temporal genetic approaches based on genetic information at 25 microsatellite loci from 62 and 58 mouflons sampled in 1988 and 2003, respectively. Genetic Ne estimates were higher than expected, varying between 104 and 250 depending on the methods used. Both demographic and genetic approaches show the Haute Island Ne is buffered against population crashes. The unexpectedly high Ne likely results from the cyclic winter crashes that allow young males to reproduce, limiting the variance of male reproductive success. Based on individual-based simulations, we suggest that despite a strongly female-biased sex ratio, the effects of the mating system on the effective population size more closely resemble random mating or weak polygyny. 相似文献
9.
Thévenon S Dayo GK Sylla S Sidibe I Berthier D Legros H Boichard D Eggen A Gautier M 《Animal genetics》2007,38(3):277-286
Several previous studies concluded that linkage disequilibrium (LD) in livestock populations from developed countries originated from the impact of strong selection. Here, we assessed the extent of LD in a cattle population from western Africa that was bred in an extensive farming system. The analyses were performed on 363 individuals in a Bos indicus x Bos taurus population using 42 microsatellite markers on BTA04, BTA07 and BTA13. A high level of expected heterozygosity (0.71), a high mean number of alleles per locus (9.7) and a mild shift in Hardy-Weinberg equilibrium were found. Linkage disequilibrium extended over shorter distances than what has been observed in cattle from developed countries. Effective population size was assessed using two methods; both methods produced large values: 1388 when considering heterozygosity (assuming a mutation rate of 10(-3)) and 2344 when considering LD on whole linkage groups (assuming a constant population size over generations). However, analysing the decay of LD as a function of marker spacing indicated a decreasing trend in effective population size over generations. This decrease could be explained by increasing selective pressure and/or by an admixture process. Finally, LD extended over small distances, which suggested that whole-genome scans will require a large number of markers. However, association studies using such populations will be effective. 相似文献
10.
Nan Lin Jacob B. Landis Yanxia Sun Xianhan Huang Xu Zhang Qun Liu Huajie Zhang Hang Sun Hengchang Wang Tao Deng 《Ecology and evolution》2021,11(12):8000
The flora of northern China forms the main part of the Sino‐Japanese floristic region and is located in a south–north vegetative transect in East Asia. Phylogeographic studies have demonstrated that an arid belt in this region has promoted divergence of plants in East Asia. However, little is known about how plants that are restricted to the arid belt of flora in northern China respond to climatic oscillation and environmental change. Here, we used genomic‐level data of Myripnois dioica across its distribution as a representative of northern China flora to reconstruct plant demographic history, examine local adaptation related to environmental disequilibrium, and investigate the factors related to effective population size change. Our results indicate M. dioica originated from the northern area and expanded to the southern area, with the Taihang Mountains serving as a physical barrier promoting population divergence. Genome‐wide evidence found strong correlation between genomic variation and environmental factors, specifically signatures associated with local adaptation to drought stress in heterogeneous environments. Multiple linear regression analyses revealed joint effects of population age, mean temperature of coldest quarter, and precipitation of wettest month on effective population size (Ne). Our current study uses M. dioica as a case for providing new insights into the evolutionary history and local adaptation of northern China flora and provides qualitative strategies for plant conservation. 相似文献
11.
The harvest of ungulate populations is often directed against certain sex or age classes to maximize the yield in terms of biomass, number of shot animals or number of trophies. Here we examine how such directional harvest affects the effective size of the population. We parameterize an age-specific model assumed to describe the dynamics of Fennoscandian moose. Based on expressions for the demographic variance for a small subpopulation of heterozygotes Aa bearing a rare neutral allele a , we use this model to calculate how different harvest strategies influence the effective size of the population, given that the population remains stable after harvest. We show that the annual genetic drift, determined by , increases with decreasing harvest rate of calves and increasing sex bias in the harvest towards bulls 1 year or older. The effective population size per generation decreased with reduced harvest of calves and increased harvest of bulls 1 year or older. The magnitude of these effects depends on the age-specific pattern of variation in reproductive success, which influences the demographic variance. This shows that the choice of harvest strategy strongly affects the genetic dynamics of harvested ungulate populations. 相似文献
12.
Thuy Yen Duong Kim T. Scribner Patrick S. Forsythe James A. Crossman Edward A. Baker 《Molecular ecology》2013,22(5):1282-1294
Quantifying interannual variation in effective adult breeding number (Nb) and relationships between Nb, effective population size (Ne), adult census size (N) and population demographic characteristics are important to predict genetic changes in populations of conservation concern. Such relationships are rarely available for long‐lived iteroparous species like lake sturgeon (Acipenser fulvescens). We estimated annual Nb and generational Ne using genotypes from 12 microsatellite loci for lake sturgeon adults (n = 796) captured during ten spawning seasons and offspring (n = 3925) collected during larval dispersal in a closed population over 8 years. Inbreeding and variance Nb estimated using mean and variance in individual reproductive success derived from genetically identified parentage and using linkage disequilibrium (LD) were similar within and among years (interannual range of Nb across estimators: 41–205). Variance in reproductive success and unequal sex ratios reduced Nb relative to N on average 36.8% and 16.3%, respectively. Interannual variation in Nb/N ratios (0.27–0.86) resulted from stable N and low standardized variance in reproductive success due to high proportions of adults breeding and the species' polygamous mating system, despite a 40‐fold difference in annual larval production across years (437–16 417). Results indicated environmental conditions and features of the species' reproductive ecology interact to affect demographic parameters and Nb/N. Estimates of Ne based on three single‐sample estimators, including LD, approximate Bayesian computation and sibship assignment, were similar to annual estimates of Nb. Findings have important implications concerning applications of genetic monitoring in conservation planning for lake sturgeon and other species with similar life histories and mating systems. 相似文献
13.
Erika King Megan V. McPhee Scott C. Vulstek Curry J. Cunningham Joshua R. Russell David A. Tallmon 《Evolutionary Applications》2023,16(8):1472-1482
Alternative life-history tactics are predicted to affect within-population genetic processes but have received little attention. For example, the impact of precocious males on effective population size (Ne) has not been quantified directly in Pacific salmon Oncorhynchus spp., even though they can make up a large percentage of the total male spawners. We investigated the contribution of precocial males (“jacks”) to Ne in a naturally spawning population of Coho Salmon O. kisutch from the Auke Creek watershed in Juneau, Alaska. Mature adults that returned from 2009 to 2019 (~8000 individuals) were genotyped at 259 single-nucleotide polymorphism (SNP) loci for parentage analysis. We used demographic and genetic methods to estimate the effective number of breeders per year (Nb). Jack contribution to Nb was assessed by comparing values of Nb calculated with and without jacks and their offspring. Over a range of Nb values (108–406), the average jack contribution to Nb from 2009 to 2015 was 12.9% (SE = 3.8%). Jacks consistently made up over 20% of the total male spawners. The presence of jacks did not seem to influence Nb/N. The linkage disequilibrium Ne estimate was lower than the demographic estimate, possibly due to immigration effects on population genetic processes: based on external marks and parentage data, we estimated that immigrant spawners produced 4.5% of all returning offspring. Our results demonstrate that jacks can influence Nb and Ne and can make a substantial contribution to population dynamics and conservation of threatened stocks. 相似文献
14.
Jibin Miao Perla Farhat Wentao Wang Markus Ruhsam Richard Milne Heng Yang Sonam Tso Jialiang Li Jingjing Xu Lars Opgenoorth Georg Miehe Kangshan Mao 《Annals of botany》2021,128(7):903
Background and AimsUnderstanding the population genetics and evolutionary history of endangered species is urgently needed in an era of accelerated biodiversity loss. This knowledge is most important for regions with high endemism that are ecologically vulnerable, such as the Qinghai–Tibet Plateau (QTP).MethodsThe genetic variation of 84 juniper trees from six populations of Juniperus microsperma and one population of Juniperus erectopatens, two narrow-endemic junipers from the QTP that are sister to each other, was surveyed using RNA-sequencing data. Coalescent-based analyses were used to test speciation, migration and demographic scenarios. Furthermore, positively selected and climate-associated genes were identified, and the genetic load was assessed for both species.Key ResultsAnalyses of 149 052 single nucleotide polymorphisms showed that the two species are well differentiated and monophyletic. They diverged around the late Pliocene, but interspecific gene flow continued until the Last Glacial Maximum. Demographic reconstruction by Stairway Plot detected two severe bottlenecks for J. microsperma but only one for J. erectopatens. The identified positively selected genes and climate-associated genes revealed habitat adaptation of the two species. Furthermore, although J. microsperma had a much wider geographical distribution than J. erectopatens, the former possesses lower genetic diversity and a higher genetic load than the latter.ConclusionsThis study sheds light on the evolution of two endemic juniper species from the QTP and their responses to Quaternary climate fluctuations. Our findings emphasize the importance of speciation and demographic history reconstructions in understanding the current distribution pattern and genetic diversity of threatened species in mountainous regions. 相似文献
15.
Determining the genetic structure of tropical bird populations is important for assessing potential genetic effects of future habitat fragmentation and for testing hypotheses about evolutionary mechanisms promoting diversification. Here we used 10 microsatellite DNA loci to describe levels of genetic differentiation for five populations of the lek-mating blue manakin (Chiroxiphia caudata), sampled along a 414-km transect within the largest remaining continuous tract of the highly endangered Atlantic Forest habitat in southeast Brazil. We found small but significant levels of differentiation between most populations. F(ST) values varied from 0.0 to 0.023 (overall F(ST)=0.012) that conformed to a strong isolation by distance relationship, suggesting that observed levels of differentiation are a result of migration-drift equilibrium. N(e)m values estimated using a coalescent-based method were small (相似文献
16.
S Belmar-Lucero JL Wood S Scott AB Harbicht JA Hutchings DJ Fraser 《Ecology and evolution》2012,2(3):562-573
Lower effective sizes (N(e)) than census sizes (N) are routinely documented in natural populations, but knowledge of how multiple factors interact to lower N(e)/N ratios is often limited. We show how combined habitat and life-history influences drive a 2.4- to 6.1-fold difference in N(e)/N ratios between two pristine brook trout (Salvelinus fontinalis) populations occupying streams separated by only 750 m. Local habitat features, particularly drainage area and stream depth, govern trout biomass produced in each stream. They also generate higher trout densities in the shallower stream by favoring smaller body size and earlier age-at-maturity. The combination of higher densities and reduced breeding site availability in the shallower stream likely leads to more competition among breeding trout, which results in greater variance in individual reproductive success and a greater reduction in N(e) relative to N. A similar disparity between juvenile or adult densities and breeding habitat availability is reported for other species and hence may also result in divergent N(e)/N ratios elsewhere. These divergent N(e)/N ratios between adjacent populations are also an instructive reminder for species conservation programs that genetic and demographic parameters may differ dramatically within species. 相似文献
17.
Meaghan I. Clark;Sarah W. Fitzpatrick;Gideon S. Bradburd; 《Evolutionary Applications》2024,17(7):e13754
Detecting recent demographic changes is a crucial component of species conservation and management, as many natural populations face declines due to anthropogenic habitat alteration and climate change. Genetic methods allow researchers to detect changes in effective population size (Ne) from sampling at a single timepoint. However, in species with long lifespans, there is a lag between the start of a decline in a population and the resulting decrease in genetic diversity. This lag slows the rate at which diversity is lost, and therefore makes it difficult to detect recent declines using genetic data. However, the genomes of old individuals can provide a window into the past, and can be compared to those of younger individuals, a contrast that may help reveal recent demographic declines. To test whether comparing the genomes of young and old individuals can help infer recent demographic bottlenecks, we use forward-time, individual-based simulations with varying mean individual lifespans and extents of generational overlap. We find that age information can be used to aid in the detection of demographic declines when the decline has been severe. When average lifespan is long, comparing young and old individuals from a single timepoint has greater power to detect a recent (within the last 50 years) bottleneck event than comparing individuals sampled at different points in time. Our results demonstrate how longevity and generational overlap can be both a hindrance and a boon to detecting recent demographic declines from population genomic data. 相似文献
18.
We sequenced the control region of the mitochondrial DNA from a sample of six European blue tit populations to investigate the phylogeography of Parus species. Along a transect from Barcelona, Spain to Oulu, Finland, the blue tit showed a different phylogeographic structure than the great tit and the willow tit. The southernmost sample from Barcelona consisted of two widely divergent maternal lineages (nucleotide divergence, π = 0.30%), a situation also found earlier in the French Alps. The more northern populations had a relatively uniform structure (π = 0.19%) with distinctive marks of a growing population, thus resembling the great tit populations (π = 0.19%). The amount of genetic variation among blue tits is lower than in the willow tit (π = 0.53%). This probably reflects a smaller long-term effective population size in the great tit and the blue tit than in the willow tit. The different genetic structure of the Barcelona population vs. the rest had an influence on the estimated population parameters, which are calculated based on the assumptions of genetic equilibrium of the populations. 相似文献
19.
Xiaoming Liu 《Molecular biology and evolution》2020,37(9):2691
The prehistoric demography of human populations is an essential piece of information for illustrating our evolution. Despite its importance and the advancement of ancient DNA studies, our knowledge of human evolution is still limited, which is also the case for relatively recent population dynamics during and around the Holocene. Here, we inferred detailed demographic histories from 1 to 40 ka for 24 population samples using an improved model-flexible method with 36 million genome-wide noncoding CpG sites. Our results showed many population growth events that were likely due to the Neolithic Revolution (i.e., the shift from hunting and gathering to agriculture and settlement). Our results help to provide a clearer picture of human prehistoric demography, confirming the significant impact of agriculture on population expansion, and provide new hypotheses and directions for future research. 相似文献
20.
Kevin K. Clausen Jesper Madsen Fred Cottaar Eckhart Kuijken Christine Verscheure 《Global Change Biology》2018,24(7):3214-3225
When and where to move is a fundamental decision to migratory birds, and the fitness‐related costs and benefits of migratory choices make them subject to strong selective forces. Site use and migration routes are outcomes of opportunities in the surrounding landscape, and the optimal migration strategy may be conservative or explorative depending on the variability in the environment occupied by the species. This study applies 25 years of resighting data to examine development in winter migration strategy of pink‐footed geese divided among Denmark, the Netherlands and Belgium, and analyse potential drivers of strategy change as well as individuals’ likelihood to break with migratory tradition. Contrary with the general notion that geese are highly traditional in their winter site use, our results reveal that winter migration strategy is highly dynamic in this species, with an average annual probability of changing strategy of 54%. Strategy was not related to hunting pressure or winter temperature, but could be partly explained by a tracking of food resources in a landscape of rapid land use changes. The probability of individuals changing strategy from year to year varied considerably between birds, and was partly related to sex and age, with young males being the most likely to change. The annual probability of changing wintering strategy increased substantially from ≈40% to ≈60% during the study period, indicating an increasingly explorative behaviour. Our findings demonstrate that individual winter strategies are very flexible and able to change over time, suggesting that phenotypic plasticity and cultural transmission are important drivers of strategy choice in this species. Growing benefits from exploratory behaviours, including the ability to track rapid land use changes, may ultimately result in increased resilience to global change. 相似文献