首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human galectin‐3 (hGal‐3) is a mammalian lectin involved in regulation of RNA splicing, apoptosis, cell differentiation, and proliferation. Multimerized extracellular hGal‐3 is thought to crosslink cells by binding to glycoproteins and glycosylated cancer antigens on the cell surface or extracellular matrix. Fluorescence spectroscopy and circular dichroism were used to study the interaction of hGal‐3 with two anticancer agents: bohemine and Zn porphyrin (ZnTPPS4). The dissociation constant (kD) for binding of bohemine with hGal‐3 was kD 0.23±0.05 μM. The hyperbolic titration curve indicated the presence of a single bohemine binding site. The binding of ZnTPPS4 to hGal‐3 (with and without lactose) is of high affinity having kD=0.18–0.20 μM and is not inhibited by lactose, indicating that ZnTPPS4 and carbohydrate bind different sites. Circular dichroism spectra of the hGal‐3 complexes suggested that the binding of the hydrophobic compounds changed the hGal‐3 secondary structure. In summary, we show that two compounds with anticancer activity, bohemine and ZnTPPS4, have high affinity for hGal‐3 at a site that is distinct from its carbohydrate site. Since hGal‐3 binds to several carbohydrate cancer antigens, the results suggest that it may have utility in the targeted delivery of drugs for cancer.  相似文献   

2.
3.
In contrast to Escherichia coli, glucose metabolism in pseudomonads occurs exclusively through the Entner‐Doudoroff (ED) pathway. This pathway, as well as the three routes to generate the initial ED pathway substrate, 6‐phosphogluconate, is regulated by the PtxS, HexR and GtrS/GltR systems. With GntR (PA2320) we report here the identification of an additional regulator in Pseudomonas aeruginosa PAO1. GntR repressed its own expression as well as that of the GntP gluconate permease. In contrast to PtxS and GtrS/GltR, GntR did not modulate expression of the toxA gene encoding the exotoxin A virulence factor. GntR was found to bind to promoters PgntR and PgntP and the consensus sequence of its operator was defined as 5′‐AC‐N‐AAG‐N‐TAGCGCT‐3′. Both operator sites overlapped with the RNA polymerase binding site and we show that GntR employs an effector mediated de‐repression mechanism. The release of promoter bound GntR is induced by gluconate and 6‐phosphogluconate that bind with similar apparent affinities to the GntR/DNA complex. GntR and PtxS are paralogous and may have evolved from a common ancestor. The concerted action of four regulatory systems in the regulation of glucose metabolism in Pseudomonas can be considered as a model to understand complex regulatory circuits in bacteria.  相似文献   

4.
The majority of bacterial genomes encode a high number of two‐component systems controlling gene expression in response to a variety of different stimuli. The Gram‐positive soil bacterium Corynebacterium glutamicum contains two homologous two‐component systems (TCS) involved in the haem‐dependent regulation of gene expression. Whereas the HrrSA system is crucial for utilization of haem as an alternative iron source, ChrSA is required to cope with high toxic haem levels. In this study, we analysed the interaction of HrrSA and ChrSA in C. glutamicum. Growth of TCS mutant strains, in vitro phosphorylation assays and promoter assays of PhrtBA and PhmuO fused to eyfp revealed cross‐talk between both systems. Our studies further indicated that both kinases exhibit a dual function as kinase and phosphatase. Mutation of the conserved glutamine residue in the putative phosphatase motif DxxxQ of HrrS and ChrS resulted in a significantly increased activity of their respective target promoters (PhmuO and PhrtBA respectively). Remarkably, phosphatase activity of both kinases was shown to be specific only for their cognate response regulators. Altogether our data suggest the phosphatase activity of HrrS and ChrS as key mechanism to ensure pathway specificity and insulation of these two homologous systems.  相似文献   

5.
6.
7.
The Arabidopsis thaliana tandem zinc finger 1 (AtTZF1) protein is characterized by two tandem‐arrayed CCCH‐type zinc fingers. We have previously found that AtTZF1 affects hormone‐mediated growth, stress and gene expression responses. While much has been learned at the genetic and physiological level, the molecular mechanisms underlying the effects of AtTZF1 on gene expression remain obscure. A human TZF protein, hTTP, is known to bind and trigger the degradation of mRNAs containing AU‐rich elements (AREs) at the 3′ untranslated regions. However, while the TZF motif of hTTP is characterized by CX8CX5CX3H‐X18‐CX8CX5CX3H, AtTZF1 contains an atypical motif of CX7CX5CX3H‐X16‐CX5CX4CX3H. Moreover, the TZF motif of AtTZF1 is preceded by an arginine‐rich (RR) region that is unique to plants. Using fluorescence anisotropy and electrophoretic mobility shift binding assays, we have demonstrated that AtTZF1 binds to RNA molecules with specificity and the interaction is dependent on the presence of zinc. Compared with hTTP, in which TZF is solely responsible for RNA binding, both TZF and RR regions of AtTZF1 are required to achieve high‐affinity RNA binding. Moreover, zinc finger integrity is vital for RNA binding. Using a plant protoplast transient expression analysis we have further revealed that AtTZF1 can trigger the decay of ARE‐containing mRNAs in vivo. Taken together, our results support the notion that AtTZF1 is involved in RNA turnover.  相似文献   

8.
Lu Z  Dunaway-Mariano D  Allen KN 《Proteins》2011,79(11):3099-3107
Analysis of the haloalkanoate dehalogenase superfamily (HADSF) has uncovered homologues occurring within the same organism that are found to possess broad, overlapping substrate specificities, and low catalytic efficiencies. Here we compare the HADSF phosphatase BT1666 from Bacteroides thetaiotaomicron VPI‐5482 to a homologue with high sequence identity (40%) from the same organism BT4131, a known hexose‐phosphate phosphatase. The goal is to find whether these enzymes represent duplicated versus paralogous activities. The X‐ray crystal structure of BT1666 was determined to 1.82 Å resolution. Superposition of the BT1666 and BT4131 structures revealed a conserved fold and identical active sites suggestive of a common physiological substrate. The steady‐state kinetic constants for BT1666 were determined for a diverse panel of phosphorylated metabolites to define its substrate specificity profile and overall level of catalytic efficiency. Whereas BT1666 and BT4131 are both promiscuous, their substrate specificity profiles are distinct. The catalytic efficiency of BT1666 (kcat/Km = 4.4 × 102M?1 s?1 for the best substrate fructose 1,6‐(bis)phosphate) is an order of magnitude less than that of BT4131 (kcat/Km = 6.7 × 103M?1 s?1 for 2‐deoxyglucose 6‐phosphate). The seemingly identical active‐site structures point to sequence variation outside the active site causing differences in conformational dynamics or subtle catalytic positioning effects that drive the divergence in catalytic efficiency and selectivity. The overlapping substrate profiles may be understood in terms of differential regulation of expression of the two enzymes or a conferred advantage in metabolic housekeeping functions by having a larger range of possible metabolites as substrates. Proteins 2011;. © 2011 Wiley‐Liss, Inc.  相似文献   

9.
10.
Serum albumin, a protein naturally abundant in blood plasma, shows remarkable ligand binding properties of numerous endogenous and exogenous compounds. Most of serum albumin binding sites are able to interact with more than one class of ligands. Determining the protein‐ligand interactions among mammalian serum albumins is essential for understanding the complexity of this transporter. We present three crystal structures of serum albumins in complexes with naproxen (NPS): bovine (BSA‐NPS), equine (ESA‐NPS), and leporine (LSA‐NPS) determined to 2.58 Å (C2), 2.42 Å (P61), and 2.73 Å (P212121) resolutions, respectively. A comparison of the structurally investigated complexes with the analogous complex of human serum albumin (HSA‐NPS) revealed surprising differences in the number and distribution of naproxen binding sites. Bovine and leporine serum albumins possess three NPS binding sites, but ESA has only two. All three complexes of albumins studied here have two common naproxen locations, but BSA and LSA differ in the third NPS binding site. None of these binding sites coincides with the naproxen location in the HSA‐NPS complex, which was obtained in the presence of other ligands besides naproxen. Even small differences in sequences of serum albumins from various species, especially in the area of the binding pockets, influence the affinity and the binding mode of naproxen to this transport protein. Proteins 2014; 82:2199–2208. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
12.
13.
14.
The susceptibility of Culex tritaeniorhynchus collected from Gwangju, Jeollabuk Province, Republic of Korea (ROK) to insecticides was evaluated under laboratory conditions using ten insecticides (7 pyrethroids and 3 organophosphates) that are currently applied by local public health centers in the ROK. Based on the values of median lethal concentration (LC50), Cx. tritaeniorhynchus larvae were most susceptible to chlorpyrifos (0.006 ppm), fenitrothion (0.022 ppm), fenthion (0.035 ppm) and bifenthrin (0.038 ppm), and were least susceptible to esbiol (1.722 ppm). In comparative resistance tests, the resistance ratios (RRs) of seven insecticides were compared among each other using two strains of Cx. tritaeniorhynchus that were collected from the same locality during 1992 and 2010. Culex tritaeniorhynchus demonstrated significantly increased RRs to pyrethroids over time, while demonstrating decreased RRs among the organophosphates. Among the pyrethroids, permethrin had the highest RR values of 182.1‐ and 833.3‐fold differences, followed by etofenprox with RRs of 138.4‐ and 224.1‐fold differences in values of LC50 and concentration that produced 90% mortality (LC90), respectively. Culex tritaeniorhynchus strains demonstrated the least amount of change in susceptibility to the organophosphates, chlorpyrifos, fenitrothion and fenthion with 0.020‐, 0.019‐ and 0.001‐fold differences in resistance ratios (RRLC50), respectively.  相似文献   

15.
16.
The galactose‐specific lectin LecA from Pseudomonas aeruginosa is a target for the development of new anti‐infectious compounds. Sugar based molecules with anti‐adhesive properties present great potential in the fight against bacterial infection and biofilm formation. LecA is specific for oligosaccharides with terminal α‐galactoside residues and displays strong affinity for melibiose (αGal1‐6Glc) with a Kd of 38.8 µM. The crystal structure of LecA/melibiose complex shows classical calcium‐bridged binding of αGal in the primary binding site but also revealed a secondary sugar binding site with glucose bound. This sugar binding site is in close proximity to the galactose binding one, is independent of calcium and mainly involves interactions with a symmetry‐related protein. This discovery would help to the design of new potent inhibitors targeting both binding sites. Proteins 2014; 82:1060–1065. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
In the literature, there are no available data on how anti‐DNA antibodies recognize DNA. In the present work, to study the molecular mechanism of DNA recognition by antibodies, we have used anti‐DNA IgGs from blood sera of patients with multiple sclerosis. A stepwise increase in ligand complexity approach was used to estimate the relative contributions of virtually every nucleotide unit of different single‐ (ss) and double‐stranded (ds) oligonucleotides to their affinity for IgG fraction having high affinity to DNA‐cellulose. DNA‐binding site disposed on the heavy chain demonstrates higher affinity to different dNMPs (Kd = 0.63μM‐3.8μM) than the site located on the light chain (28μM‐170μM). The heavy and light chains interact independently forming relatively strong contacts with 2 to 4 nucleotides of short homo‐ and hetero‐d(pN)2‐9. Then the increase in the affinity of different d(pN)n became minimal, and at n ≥ 8 to 9, all dependencies reached plateaus: approximately 3.2nM to 20nM and approximately 200nM to 460nM for the heavy and light chains, respectively. A similar situation was observed for different ribooligonucleotides, in which their affinity is 6‐fold to 100‐fold lower than that for d(pN)n. Transition from ss to ds d(pN)n leads to a moderate increase in affinity of ligands to DNA‐binding site of heavy chains, while light chains demonstrate the same affinity for ss and ds d(pN)n. Long supercoiled DNA interacts with both heavy and light chains with affinity of approximately 10‐fold higher than that for short oligonucleotides. The thermodynamic models were constructed to describe the interactions of IgGs light and heavy chains with DNA.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号