首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Post‐translationally modified peptides present in low concentrations are often not selected for CID, resulting in no sequence information for these peptides. We have developed a software POSTMan (POST‐translational Modification analysis) allowing post‐translationally modified peptides to be targeted for fragmentation. The software aligns LC‐MS runs (MS1 data) between individual runs or within a single run and isolates pairs of peptides which differ by a user defined mass difference (post‐translationally modified peptides). The method was validated for acetylated peptides and allowed an assessment of even the basal protein phosphorylation of phenylalanine hydroxylase (PHA) in intact cells.  相似文献   

2.
Biomarkers are decision‐making tools at the basis of clinical diagnostics and essential for guiding therapeutic treatments. In this context, autoimmune diseases represent a class of disorders that need early diagnosis and steady monitoring. These diseases are usually associated with humoral or cell‐mediated immune reactions against one or more of the body's own constituents. Autoantibodies fluctuating in biological fluids can be used as disease biomarkers and they can be, thus, detected by diagnostic immunoassays using native autoantigens. However, it is now accepted that post‐translational modifications may affect the immunogenicity of self‐protein antigens, triggering an autoimmune response and creating neo‐antigens. In this case, post‐translationally modified peptides represent a more valuable tool with respect to isolated or recombinant proteins. In fact, synthetic peptides can be specifically modified to mimic neo‐antigens and to selectively detect autoantibodies as disease biomarkers. A ‘chemical reverse approach’ to select synthetic peptides, bearing specific post‐translational modifications, able to fishing out autoantibodies from patients' biological fluids, can be successfully applied for the development of specific in vitro diagnostic/prognostic assays of autoimmune diseases. Herein, we report the successful application of this approach to the identification of biomarkers in different autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
The number, diversity and significance of peptides as regulators of cellular differentiation, growth, development and defence of plants has long been underestimated. Peptides have now emerged as an important class of signals for cell‐to‐cell communication over short distances, and also for long‐range signalling. We refer to these signalling molecules as peptide growth factors and peptide hormones, respectively. As compared to remarkable progress with respect to the mechanisms of peptide perception and signal transduction, the biogenesis of signalling peptides is still in its infancy. This review focuses on the biogenesis and activity of small post‐translationally modified peptides. These peptides are derived from inactive pre‐pro‐peptides of approximately 70–120 amino acids. Multiple post‐translational modifications (PTMs) may be required for peptide maturation and activation, including proteolytic processing, tyrosine sulfation, proline hydroxylation and hydroxyproline glycosylation. While many of the enzymes responsible for these modifications have been identified, their impact on peptide activity and signalling is not fully understood. These PTMs may or may not be required for bioactivity, they may inactivate the peptide or modify its signalling specificity, they may affect peptide stability or targeting, or its binding affinity with the receptor. In the present review, we will first introduce the peptides that undergo PTMs and for which these PTMs were shown to be functionally relevant. We will then discuss the different types of PTMs and the impact they have on peptide activity and plant growth and development. We conclude with an outlook on the open questions that need to be addressed in future research.  相似文献   

4.
5.
Proteins function is regulated by co‐translational modifications and post‐translational modifications (PTMs) such as phosphorylation, glycosylation, and acetylation, which induce proteins to perform multiple tasks in a specified environment. Acetylation takes place post‐translationally on the ε‐amino group of Lys in histone proteins, allowing regulation of gene expression. Furthermore, amino group acetylation also occurs co‐translationally on Ser, Thr, Gly, Met, and Ala, possibly contributing to the stability of proteins. In this work, the influence of amino acids next to acetylated sites has been investigated by using MAPRes (Mining Association Patterns among preferred amino acid residues in the vicinity of amino acids targeted for PTMs). MAPRes was utilized to examine the sequence patterns vicinal to modified and non‐modified residues, taking into account their charge and polarity. The PTMs data were further sub‐divided according to their sub‐cellular location (nuclear, mitochondrial, and cytoplasmic), and their association patterns were mined. The association patterns mined by MAPRes for acetylated and non‐acetylated residues are consistent with the existing literature but also revealed novel patterns. These rules have been utilized to describe the acetylation and its effects on the protein structure‐function relationship. J. Cell. Biochem. 114: 874–887, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Oligomerization of G protein‐coupled receptors is a recognized mode of regulation of receptor activities, with alternate oligomeric states resulting in different signaling functions. The CXCR4 chemokine receptor is a G protein‐coupled receptor that is post‐translationally modified by tyrosine sulfation at three sites on its N‐terminus (Y7, Y12, Y21), leading to enhanced affinity for its ligand, stromal cell derived factor (SDF‐1, also called CXCL12). The complex has been implicated in cancer metastasis and is a therapeutic target in cancer treatment. Using molecular dynamics simulation of NMR‐derived structures of the CXCR4 N‐terminus in complex with SDF‐1, and calculations of electrostatic binding energies for these complexes, we address the role of tyrosine sulfation in this complex. Our results show that sulfation stabilizes the dimeric state of the CXCR4:SDF‐1 complex through hydrogen bonding across the dimer interface, conformational changes in residues at the dimer interface, and an enhancement in electrostatic binding energies associated with dimerization. These findings suggest a mechanism through which post‐translational modifications such as tyrosine sulfation might regulate downstream function through modulation of the oligomeric state of the modified system.  相似文献   

7.
Proteomic identifications hinge on the measurement of both parent and fragment masses and matching these to amino acid sequences via database search engines. The correctness of the identifications is assessed by statistical means. Here we present an experimental approach to test identifications. Chemical modification of all peptides in a sample leads to shifts in masses depending on the chemical properties of each peptide. The identification of a native peptide sequence and its perturbed version with a different parent mass and fragment ion masses provides valuable information. Labeling all peptides using reductive alkylation with formaldehyde is one such perturbation where the ensemble of peptides shifts mass depending on the number of reactive amine groups. Matching covalently perturbed fragmentation patterns from the same underlying peptide sequence increases confidence in the assignments and can salvage low scoring post‐translationally modified peptides. Applying this strategy to bovine alpha‐crystallin, we identify 9 lysine acetylation sites, 4 O‐GlcNAc sites and 13 phosphorylation sites.  相似文献   

8.
9.
10.
11.
Acetic acid‐Urea‐Triton (AUT) PAGE is commonly used method to separate histone variants and their post‐translationally modified forms. Coomassie staining is the preferred method for protein visualization; however, its sensitivity is less than that of silver staining. Though silver staining of histones in AUT‐PAGE has been reported, the method is time‐consuming, dependent on prior staining by Amido black and has not been reported suitable for mass spectrometry. Here, we propose ‘SDS‐Silver’ method for rapid, sensitive and mass spectrometry‐compatible staining of histones resolved on AUT‐PAGE.  相似文献   

12.
The discovery of PTMs in proteins by MS requires nearly complete sequence coverage of the detected proteolytic peptides. Unfortunately, mass spectrometric analysis of the desired sequence fragments is often impeded due to low ionization efficiency and/or signal suppression in complex samples. When several lysine residues are in close proximity tryptic peptides may be too short for mass analysis. Moreover, modified peptides often appear in low stoichiometry and need to be enriched before analysis. We present here how the use of sulfo‐NHS‐SS‐biotin derivatization of lysine side chain can help to detect PTMs in lysine‐rich proteins. This label leads to a mass shift which can be adjusted by reduction of the SS bridge and alkylation with different reagents. Low intensity peptides can be enriched by use of streptavidin beads. Using this method, the functionally relevant protein kinase A phosphorylation site in 5‐lipoxygenase was detected for the first time by MS. Additionally, methylation and acetylation could be unambiguously determined in histones.  相似文献   

13.
The lantibiotic lacticin 3147 consists of two ribosomally synthesized and post‐translationally modified antimicrobial peptides, Ltnα and Ltnβ, which act synergistically against a wide range of Gram‐positive microorganisms. We performed saturation mutagenesis of specific residues of Ltnα to determine their functional importance. The results establish that Ltnα is more tolerant to change than previously suggested by alanine scanning mutagenesis. One substitution, LtnαH23S, was identified which improved the specific activity of lacticin 3147 against one pathogenic strain, Staphylococcus aureus NCDO1499. This represents the first occasion upon which the activity of a two peptide lantibiotic has been enhanced through bioengineering.  相似文献   

14.
15.
16.
17.
The post‐translational processing of human α1‐antichymotrypsin (AACT) in Bright Yellow‐2 (BY‐2) tobacco cells was assessed in relation to the cellular compartment targeted for accumulation. As determined by pulse‐chase labelling experiments and immunofluorescence microscopy, AACT sent to the vacuole or the endoplasmic reticulum (ER) was found mainly in the culture medium, similar to a secreted form targeted to the apoplast. Unexpectedly, AACT expressed in the cytosol was found in the nucleus under a stable, non‐glycosylated form, in contrast with secreted variants undergoing multiple post‐translational modifications during their transit through the secretory pathway. All secreted forms of AACT were N‐glycosylated, with the presence of complex glycans as observed naturally on human AACT. Proteolytic trimming was also observed for all secreted variants, both during their intracellular transit and after their secretion in the culture medium. Overall, the targeting of human AACT to different compartments of BY‐2 tobacco cells led to the production of two protein products: (i) a stable, non‐glycosylated protein accumulated in the nucleus; and (ii) a heterogeneous mixture of secreted variants resulting from post‐translational N‐glycosylation and proteolytic processing. Overall, these data suggest that AACT is sensitive to resident proteases in the ER, the Golgi and/or the apoplast, and that the production of intact AACT in the plant secretory pathway will require innovative approaches to protect its structural integrity in vivo. Studies are now needed to assess the activity of the different AACT variants, and to identify the molecular determinants for the nuclear localization of AACT expressed in the cytosol.  相似文献   

18.
Transforming growth factor beta (TGF‐β) is a signalling molecule that plays a key role in developmental and immunological processes in mammals. Three TGF‐β isoforms exist in humans, and each isoform has unique therapeutic potential. Plants offer a platform for the production of recombinant proteins, which is cheap and easy to scale up and has a low risk of contamination with human pathogens. TGF‐β3 has been produced in plants before using a chloroplast expression system. However, this strategy requires chemical refolding to obtain a biologically active protein. In this study, we investigated the possibility to transiently express active human TGF‐β1 in Nicotiana benthamiana plants. We successfully expressed mature TGF‐β1 in the absence of the latency‐associated peptide (LAP) using different strategies, but the obtained proteins were inactive. Upon expression of LAP‐TGF‐β1, we were able to show that processing of the latent complex by a furin‐like protease does not occur in planta. The use of a chitinase signal peptide enhanced the expression and secretion of LAP‐TGF‐β1, and co‐expression of human furin enabled the proteolytic processing of latent TGF‐β1. Engineering the plant post‐translational machinery by co‐expressing human furin also enhanced the accumulation of biologically active TGF‐β1. This engineering step is quite remarkable, as furin requires multiple processing steps and correct localization within the secretory pathway to become active. Our data demonstrate that plants can be a suitable platform for the production of complex proteins that rely on specific proteolytic processing.  相似文献   

19.
20.
Biophysical studies on amyloidogenic and aggregation‐prone peptides often require large quantities of material. However, solid‐phase synthesis, handling, and purification of peptides often present challenges on these scales. Recombinant expression is an attractive alternative because of its low cost, the ability to isotopically label the peptides, and access to sequences exceeding ~50 residues. However, expression systems that seek to solubilize amyloidogenic peptides suffer from low yields, difficult optimizations, and isolation challenges. We present a general strategy for expressing and isolating amyloidogenic peptides in Escherichia coli by fusion to a polypeptide that drives the expression of attached peptides into bacterial inclusion bodies. This scheme minimizes toxicity during bacterial growth and enables the processing and handling of the peptides in denaturing solutions. Immobilized metal affinity chromatography, reverse phase HPLC, and cyanogen bromide cleavage are used to isolate the peptide, followed by further reverse phase HPLC, which yields milligram quantities of the purified peptide. We demonstrate that driving the peptides into inclusion bodies using fusion to BCL‐XL‐1/2 is a general strategy for their expression and isolation, as exemplified by the production of 11 peptides species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号