首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homologous recombination between repeated DNA elements in the genomes of Mycoplasma species has been hypothesized to be a crucial causal factor in sequence variation of antigenic proteins at the bacterial surface. To investigate this notion, studies were initiated to identify and characterize the proteins that form part of the homologous DNA recombination machinery in Mycoplasma pneumoniae as well as Mycoplasma genitalium. Among the most likely participants of this machinery are homologs of the Holliday junction migration motor protein RuvB. In both M. pneumoniae and M. genitalium, genes have been identified that have the capacity to encode RuvB homologs (MPN536 and MG359, respectively). Here, the characteristics of the MPN536- and MG359-encoded proteins (the RuvB proteins from M. pneumoniae strain FH [RuvB(FH)] and M. genitalium [RuvB(Mge)], respectively) are described. Both RuvB(FH) and RuvB(Mge) were found to have ATPase activity and to bind DNA. In addition, both proteins displayed divalent cation- and ATP-dependent DNA helicase activity on partially double-stranded DNA substrates. The helicase activity of RuvB(Mge), however, was significantly lower than that of RuvB(FH). Interestingly, we found RuvB(FH) to be expressed exclusively by subtype 2 strains of M. pneumoniae. In strains belonging to the other major subtype (subtype 1), a version of the protein is expressed (the RuvB protein from M. pneumoniae strain M129 [RuvB(M129)]) that differs from RuvB(FH) in a single amino acid residue (at position 140). In contrast to RuvB(FH), RuvB(M129) displayed only marginal levels of DNA-unwinding activity. These results demonstrate that M. pneumoniae strains (as well as closely related Mycoplasma spp.) can differ significantly in the function of components of their DNA recombination and repair machinery.  相似文献   

2.
Mycoplasma genitalium adhesion protein (MgPa) is the major adhesion protein of M. genitalium, and its C-terminal domain (amino acid 1075-1444) is the most immunogenic region. However, the exact epitopes of the adhesion protein of M. genitalium are still unclear. We used the purified polyclonal antibody against the recombinant adhesion protein to screen the mimic epitopes of MgPa using a random 12-peptide phage display library. Immunoscreening via the phage display peptide library revealed that 3 motifs (P-S-A-A/V-X-R-F/W-E/S-L-S-P, A-K-I/L-T/Q-X-T-L-X-L, and K-S-L-S-R-X-D-X-I) may represent 3 different mimotopes of MgPa. Results of bioinformatics analysis by MIMOX demonstrated that the key consensus amino acid residues in the aligned mimotopes may be S, A, and F for cluster 1; A, K, I, T, and L for cluster 2; and K, S, L, R, D, and I for cluster 3. Three representative phages could recognize sera from M. genitalium-positive patients to varying degrees, whereas they could not recognize the sera from Mycoplasma pneumoniae -positive patients or the sera from healthy people. These findings will help to clarify the mimic epitopes of MgPa to facilitate diagnosis of the antigen and to understand the antigenic structure of MgPa.  相似文献   

3.
Mycoplasma genitalium is the smallest microorganism capable of self-replication. With its small genome, M. genitalium is the best representative of a minimal cell. The comparison of genome evolution among the three urogenital mycoplasmas, M. genitalium, M. hominis, and Ureaplasma parvum, not only indicated that they share a core genome of ~250 protein-encoding genes that correspond to their basic cell metabolism, but also showed a striking difference in their energy-generating pathways. M. genitalium is a sexually transmitted organism associated with nongonococcal urethritis in men and several inflammatory reproductive tract syndromes in women, such as cervicitis, pelvic inflammatory disease, and infertility. The treatment of M. genitalium infections has not yet been standardized. Macrolides are recommended, especially single-dose azithromycin; tetracyclines are responsible for a large number of therapeutic failures without any acquired resistance demonstrated. Acquired resistance to macrolides and fluoroquinolones leading to therapeutic failure has been described.  相似文献   

4.
Genome size of Mycoplasma genitalium.   总被引:10,自引:3,他引:7       下载免费PDF全文
The genome size of Mycoplasma genitalium was determined by using restriction enzymes that infrequently cut its DNA. The calculated value of 577 to 590 kilobases is one-fourth smaller than the genome of Mycoplasma pneumoniae, which is considered among the smallest genomes of self-replicating organisms.  相似文献   

5.
Abstract Cytadherence and subsequent parasitism of host cells by the human pathogens, Mycoplasma pneumoniae and Mycoplasma genitalium , are mediated by adhesins and adherence-related accessory proteins. In this report we demonstrate the use of transposon Tn 4001 to generate Tn-induced transformants displaying cytadherence-deficient characteristics. Mycoplasma pneumoniae Tn-generated transformant, designated 8R, lacked the high-molecular weight adherence-accessory proteins HMW1/4 and was deficient in hemadsorption and cytadherence capabilities. In transformant 8R, Tn 4001 was not localized in or near the hmw 1 gene or in the upstream adhesin (p30/hmw3) locus, suggesting an alternate site associated with the regulation of hmw 1 gene expression. Sequence analysis identified the transposon insertion site at the crl locus previously reported, although the protein characteristics of transformant 8R differed from the earlier described transformants. The M. genitalium Tn-transformant, designated G26, was also defective in hemadsorption and cytadherence. However, transformant G26 synthesized adhesins P140 and P32 suggesting that Tn 4001 transposed into a new gene or site previously unlinked to cytadherence, namely ORF MG032. This study demonstrates the utility of Tn 4001 mutagenesis for both M. pneumoniae and M. genitalium which, in the latter case, has special relevance in light of the recent complete characterization of its continuous total genomic sequence.  相似文献   

6.
7.
A physical map of the Mycoplasma genitalium genome   总被引:17,自引:1,他引:16  
We report the construction of a physical map of the genome of the human pathogen Mycoplasma genitalium through the use of pulse-field gel electrophoresis. The small size and relative simplicity of this genome permit the arrangement of restriction fragments without having to construct linking clones. The size of the genome has been calculated to be approximately 600 kb and several important genetic determinants have been assigned specific loci on the map.  相似文献   

8.
9.
Liu YC  Lin IH  Chung WJ  Hu WS  Ng WV  Lu CY  Huang TY  Shu HW  Hsiao KJ  Tsai SF  Chang CH  Lin CH 《PloS one》2012,7(4):e35304
Mycoplasma fermentans is a potent human pathogen which has been implicated in several diseases. Notably, its lipid-associated membrane proteins (LAMPs) play a role in immunomodulation and development of infection-associated inflammatory diseases. However, the systematic protein identification of pathogenic M. fermentans has not been reported. From our recent sequencing results of M. fermentans M64 isolated from human respiratory tract, its genome is around 1.1 Mb and encodes 1050 predicted protein-coding genes. In the present study, soluble proteome of M. fermentans was resolved and analyzed using two-dimensional gel electrophoresis. In addition, Triton X-114 extraction was carried out to enrich amphiphilic proteins including putative lipoproteins and membrane proteins. Subsequent mass spectrometric analyses of these proteins had identified a total of 181 M. fermentans ORFs. Further bioinformatics analysis of these ORFs encoding proteins with known or so far unknown orthologues among bacteria revealed that a total of 131 proteins are homologous to known proteins, 11 proteins are conserved hypothetical proteins, and the remaining 39 proteins are likely M. fermentans-specific proteins. Moreover, Triton X-114-enriched fraction was shown to activate NF-kB activity of raw264.7 macrophage and a total of 21 lipoproteins with predicted signal peptide were identified therefrom. Together, our work provides the first proteome reference map of M. fermentans as well as several putative virulence-associated proteins as diagnostic markers or vaccine candidates for further functional study of this human pathogen.  相似文献   

10.

Background

To determine clinical outcomes and cure rates for M.genitalium genital infection in men and women following azithromycin 1 g.

Methodology

Patients attending Melbourne Sexual Health Centre between March 2005 and November 2007 with urethritis/epididymitis, cervicitis/pelvic inflammatory disease and sexual contacts of M.genitalium were tested for M.genitalium by polymerase chain reaction (PCR). M.genitalium-infection was treated with 1 g of azithromycin and a test-of-cure (toc) was performed one month post-azithromycin. Response to azithromycin, and response to moxifloxacin (400 mg daily for 10 days) in individuals with persistent infection post-azithromycin, was determined.

Principal Findings

Of 1538 males and 313 females tested, 161 males (11%) and 30 females (10%) were infected with M.genitalium. A toc was available on 131 (69%) infected individuals (median = 36 days [range 12-373]). Of 120 individuals prescribed azithromycin only pre-toc, M.genitalium was eradicated in 101 (84%, 95% confidence intervals [CI]: 77–90%) and persisted in 19 (16%, 95% CI: 10–23%). Eleven individuals with persistent infection (9%, 95% CI: 5–15%) had no risk of reinfection from untreated-partners, while eight (7%, 95% CI: 3–12%) may have been at risk of reinfection from doxycycline-treated or untreated-partners. Moxifloxacin was effective in eradicating persistent infection in all cases not responding to azithromycin. Patients with persistent-M.genitalium were more likely to experience persistent symptoms (91%), compared to patients in whom M.genitalium was eradicated (17%), p<0.0001.

Conclusion

Use of azithromycin 1 g in M.genitalium-infected patients was associated with unacceptable rates of persistent infection, which was eradicated with moxifloxacin. These findings highlight the importance of follow-up in M.genitalium-infected patients prescribed azithromycin, and the need to monitor for the development of resistance. Research to determine optimal first and second-line therapeutic agents for M.genitalium is needed.  相似文献   

11.
Adherence epitopes of Mycoplasma genitalium adhesin.   总被引:2,自引:0,他引:2  
The adherence-mediating sites of the 153 kDa adhesin of Mycoplasma genitalium (MgPa-protein) were characterized at the amino acid sequence level using six monoclonal anti-MgPa antibodies which showed adherence-inhibiting activity. For characterization of the regions to which antibody bound, three segments of the adhesin (N-terminal region, a D1-domain located approximately in the middle of the molecule and a D2-domain located near to the C-terminus) were synthesized as overlapping octapeptides. These regions were chosen in analogy to the three domains of Mycoplasma pneumoniae that are involved in the adhesion process. Whereas two monoclonal antibodies (mAb 5B11 and mAb 6F3) bound exclusively to an epitope in the N-region, mAb 3B7 and mAb 6A2 reacted with two distinct epitopes of the D2-domain only. Binding to short synthetic peptides of different regions was analysed for mAb 3A12 (N-region and D1-region) and mAb 2B6 (N-region and D2-region). Close proximity of the N-region and the D2-region in the native MgPa-protein of M. genitalium was indicated in a competitive ELISA test, using freshly harvested M. genitalium cells. Epitope mapping and competition experiments with monoclonal anti-MgPa antibodies revealed interesting differences in the adherence-mediating sites of MgPa and the adhesin (P1-protein) of M. pneumoniae. Whereas a three-dimensional arrangement of protein loops is suggested for both native adhesins, the MgPa-protein and the P1-protein adherence-mediating epitopes are located in non-homologous regions of these two related proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
Overlapping genes are defined, in this paper, as a pair of adjacent genes whose coding regions are partly overlapping. We systematically analyzed all overlapping genes in the genomes of two closely related species: Mycoplasma genitalium and Mycoplasma pneumoniae. Careful comparisons were made for homologous genes that are overlapped in one species but not in the other. This comparative analysis allows us to propose a model of how overlapping genes emerged in the course of evolution. It was found that overlapping genes were generated primarily due to the loss of a stop codon in either gene, in many cases, the absence of which resulted in elongation of the 3' end of the gene's coding region. More specifically, the loss of the stop codon took place as a result of the following events: deletion of the stop codon (64.4%), point mutation at the stop codon (4.4%), and frame shift at the end of the coding region (6.7%). Overlapping genes, in a sense, can be thought of as the results of evolutionary pressure to minimize genome size. However, our analysis indicates that many overlapping genes, at least in the genomes of M.genitalium and M.pneumoniae, are due to incidental elongation of the coding regions.  相似文献   

14.
Nucleotide sequence of the tuf gene from Mycoplasma genitalium.   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

15.
16.
In the bacterial world, methylation is most commonly associated with restriction-modification systems that provide a defense mechanism against invading foreign genomes. In addition, it is known that methylation plays functionally important roles, including timing of DNA replication, chromosome partitioning, DNA repair, and regulation of gene expression. However, full DNA methylome analyses are scarce due to a lack of a simple methodology for rapid and sensitive detection of common epigenetic marks (ie N6-methyladenine (6 mA) and N4-methylcytosine (4 mC)), in these organisms. Here, we use Single-Molecule Real-Time (SMRT) sequencing to determine the methylomes of two related human pathogen species, Mycoplasma genitalium G-37 and Mycoplasma pneumoniae M129, with single-base resolution. Our analysis identified two new methylation motifs not previously described in bacteria: a widespread 6 mA methylation motif common to both bacteria (5′-CTAT-3′), as well as a more complex Type I m6A sequence motif in M. pneumoniae (5′-GAN7TAY-3′/3′-CTN7 ATR-5′). We identify the methyltransferase responsible for the common motif and suggest the one involved in M. pneumoniae only. Analysis of the distribution of methylation sites across the genome of M. pneumoniae suggests a potential role for methylation in regulating the cell cycle, as well as in regulation of gene expression. To our knowledge, this is one of the first direct methylome profiling studies with single-base resolution from a bacterial organism.  相似文献   

17.
The Mycoplasma pneumoniae FH strain routinely used in our laboratory for over 25 years as antigen in serological tests, 2 reference M. pneumoniae strains from ATCC (29342 and M129) and 3 isolates of M. pneumoniae obtained in 1995 from pneumonia patients were compared by SDS-PAGE, complement fixation test (CFT) and by Western-immunoblotting against human and rabbit serum samples with high level of mycoplasmal antibodies. On SDS-PAGE all M. pneumoniae strains showed the same number of 23 polypeptides on the gel with identical molecular weights. The same strains on immunoblotting against human and rabbit serum samples showed six bands: 170, 89, 75, 55, 38 and 33 kDa with the strongest antibody staining in 170-(P1 protein) and 89-kDa bands. Because of its known antigenic relationships Mycoplasma genitalium was used for comparison. The pattern of M. genitalium proteins on SDS-PAGE was similar to pattern of M. pneumoniae but distinguishable. On immunoblotting six proteins of M. genitalium (135, 127, 110, 95, 75 and 45 kDa) reacted with human and rabbits immunoglobulins for M. pneumoniae antigens. Furthermore in complement fixation test both antigens, prepared from M. pneumoniae and M. genitalium, reacted as well with human and rabbit immunoglobulins for M. pneumoniae and with rabbit immunoglobulins for M. genitalium. These cross-reactions observed in serological techniques could give false positive results in routine diagnosis of M. pneumoniae infections. In such situations showing on immunoblott of presence in tested serum sample of antibodies to 170- and 89 kDa proteins could confirm M. pneumoniae infection.  相似文献   

18.
19.
Hsp70 chaperones keep protein homeostasis facilitating the response of organisms to changes in external and internal conditions. Hsp70s have two domains—nucleotide binding domain (NBD) and substrate binding domain (SBD)—connected by a conserved hydrophobic linker. Functioning of Hsp70s depend on tightly regulated cycles of ATP hydrolysis allosterically coupled, often together with cochaperones, to the binding/release of peptide substrates. Here we describe the crystal structure of the Mycoplasma genitalium DnaK (MgDnaK) protein, an Hsp70 homolog, in the noncompact, nucleotide‐bound/substrate‐bound conformation. The MgDnaK structure resembles the one from the thermophilic eubacteria DnaK trapped in the same state. However, in MgDnaK the NBD and SBD domains remain close to each other despite the lack of direct interaction between them and with the linker contacting the two subdomains of SBD. These observations suggest that the structures might represent an intermediate of the protein where the conserved linker binds to the SBD to favor the noncompact state of the protein by stabilizing the SBDβ‐SBDα subdomains interaction, promoting the capacity of the protein to sample different conformations, which is critical for proper functioning of the molecular chaperone allosteric mechanism. Comparison of the solved structures indicates that the NBD remains essentially invariant in presence or absence of nucleotide.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号